Blood picture and hepatic changes in rabbits experimentally infected with Trypanosoma evansi. Iraqi strain

Abdul-majeed H. alsaffar* Abbas F. Hassoon** Abbood H. Farag

*Department of Basic Science. College of Dentistry. Babylon University / Iraq.
**Department of Pathology. College of Medicine. Babylon University / Iraq.

Abstract

Seven adult male rabbits (infected group) aged 8-10 months, infected with 10⁵ of T.evansi, which isolated from Iraqi camels. The parasites inoculated into the lateral ear vein. The infection induced clinical symptoms of disease presented as acute and chronic phases depending upon the duration of infection. Thick and thin blood smears were made daily to the end of experiment for detection of parasites and description of blood cells respectively. Differential leucocytes count (DLC) also done. The parasite observed in blood during acute phase only. Leucocytosis due to marked lymphocytosis recognized in acute phase followed by leucopenia during chronic phase .The main changes in the DLC were the presence of macrocytes, Howell-Jolly bodies, target cells, stomatocytes, Burr cells, and a lymphocytosis recognized in acute phase followed by leucopenia during chronic phase .The main changes in the

Introduction

Trypanosomes (T) are a wide range of blood parasites, which cause trypanosomiasis in both human and animals such as T.rhodesiense, T.vivaxs, T.bruc T.gambiense, T.congolense and T. evansi. Trypanozoon evansi first diagnosed by Major Chadwick (1938) in the dogs(1) and in camels as an enzootic disease. Trypanosome evansi also affected cattle and buffalo(2) .Trypanosomiasis in human named African sleeping disease .The main way for the spread of these parasites is by a mechanical transmission. In other words, some sort of haematophagous insects such as Tobanid flies
can transfer the infected blood to other healthy organisms. Trypanosome species carried by Tobanid flies, *T.evansi* remains monomorphic throughout its life cycle, while *T. brucei* subspecies presents different range of forms during different points of its life cycle. The present study deals with the clinical, some hemato logical and pathological changes in blood and liver of adult male rabbits experimentally infected with Iraqi strain of *T.evansi*.

Materials and Methods

Fourteen adult male rabbits 8-10 months old, of New Zealand white strain used for this experiment. The animals maintained under the same period of daylight and 25°C temperature; they received adequate green food and water throughout the period of experiment. The rabbits randomly assigned into two groups, each one include seven animals, an infected group and control group. Each rabbit of the infected group received intra-venous injection via the lateral ear vein 10(5) of *T.evansi* strain that infects Iraqi camels (*Camelus dromedaus*). Thick and thin blood smears made daily to the end of the sixth week from both groups. At the end of experiment all the rabbits killed by sodium phenobarbitone injection in their lateral ear vein. The liver of both rabbit groups collected, dissected longitudinally and transversely, finally fixed by Bouin's fixative solution. The liver pieces washed thoroughly by water, and processed by automatic tissues processor then embedded in paraffin wax. Liver pieces sliced by microtome to about 3-4µ thickness. The slices fixed on glass slides and stained by Harris hematoxylin-eosin stain. All the stained slides examined microscopically to observe pathological changes due to the infection with *T.evansi*. Blood smears stained by Leishmania stain and examined for detection of parasites, differential leucocytes count (DLC) and morphological changes in the blood cells. Histological changes in liver of infected group revealed fatty changes, progressive destruction of hepatic parenchyma, and the inflammatory reaction extended from the portal tract to the parenchyma causing hepatic necrosis. The bridging formation between portal area and central area was observed. These results compared with the liver of control group.

Discussion

The observed clinical signs on rabbits of this study include rise in temperature during the first three days after infection, loss of appetite, progressive emaciation, and refusal to walk due to recumbence, depression, conjunctivitis, corneal opacity, and anemia in most of the infected rabbits. Dargantes et.al (7) denoted these signs in goats, even these
changes were not pathognomonic in the absence of parasite in the blood. Audu et al. (8) recognized the same signs in sheep. Damayanti et al. (9) reported them in Indonesian buffalo infected with *T.evansi*. Silva et al. (10) observed these symptoms in Brazilian Pantanal due to *T. vivax* infection. Anemia was the most distinct feature of disease (8), in most of experimental animals and it varied from moderate to more intensive anemia. Herrera et al. (11) and Masaka (12) observed anemia in goats and cattle infected with *T.vivax*.

Trypanosoma evansi produces parasitemic waves observed three days post inoculation in rabbits. The parasite was detected in the blood films during daily routine examination of infected blood films (acute phase). More than two weeks later, the trypanosomes disappear from the blood (chronic phase). In sheep infected with *T.evansi* were also positive for parasite, during the prepatent period which varied between 3-6 days, and two distinct forms of disease were produced in sheep namely acute (4-14 days post infection) and chronic (43-59 days), the fluctuating pyrexia coincided with rise in parasitemia, these observation declared by Audu et al. (8). The parasite also detected in goats during parasitemia (7). Only Herrera et al. (11) observed that parasitemia extends to the end of experimental period, on coati of South America infected with *T.evansi* infection. Significant increase in total number of leucocytes observed in acute phase of infection because of lymphocytosis. Lymphopenia in chronic phase. These results coincide with other findings of experiments done previously in buffalo calves, bovine (13,10) sheep (14) ewes(15) and rabbits (16) infected with *T.evansi*, *T.vivax*, *T.evansi*, and *T.bruci* and *T.b gambiense* respectively. Another experiment on goat proved opposite the mentioned results and informed that leukocytosis was not a reliable indicator of infection (7). In camels(17) diagnosed a significant decrease in lymphocyte with a visible increase in both leucocytes and neutrophils noted. In other experimental infection on Norwegian lemming with *T.lemmi* the leucocyte, counts remained the same(18).

Morphological changes of erythrocytes showed the presence of anisocytosis, poikilocytosis, target cells, macrocytes, Howell-Jolly bodies, Burr cells, stomatocytes, as well as deficiency in hemoglobin of erythrocytes that usually hypochromic. These changes occurred due to liver disease. The deficiencies of essential elements such as ferrous, vitamin B12 and folates resulting from loss of appetite. While the Presence of Burr cell was an indicator of renal failure. In any way, many of the experimental results mentioned that a significant decrease in hemoglobin percentage and the total erythrocyte count was under its normal level (8.9.11.13.15). The presence of macrocytes confirmed by many results observed by Silva et al. (10) Ogunsammi et al. (15) and Wiqer(18). They supported our results, and denoted that the presence of macrocytic hypochromic cells in acute stage, and normocytic hypochromic cells in chronic stage (19), but this note excepted by Emeribe (16) where he mentioned that the macrocytic cells shifted terminally to microcyic hypochromic cells with the evidence of a moderate anisocytosis and poikilocytosis of erythrocytes.

Hepatic changes may occur due to trypanosomes infection or their products Biswas et al. (20) observed predominant histopathological changes such as pseudo-lobule formation, necrosis, and hemorrhage within the sinusoids of the liver, and fatty degeneration in hepatic cells of bandicoot rat infected with *T.evansi*. The changes were destructive and irreversible. Hepatomegaly seen by Dargantes et al. (21) and Damayanti et al. (9) noticed congestion in liver after necropsy in goat and buffalo respectively infected with *T.evansi*. Necrotic foci in liver and destruction of hepatocytes with infiltration by inflammatory cells in the liver of goats observed by Ngeranwa et al. (22) Losos and Ikede(23) reported that *T.bruci* localized in the connective tissues of dermis and sub cutis of ears, lips, nose, eyelids and the connective tissues of the nasal mucous membranes in the rabbit.
References

Figure (1) Blood film: a. Howell-Jolly bodies.
b. hypochromic cell

Figure (2) Blood film: a. stomatocyte cells
b. deficiency or disappearance of platelet

c. macrocyte cell
Figure (4) Liver (40 x) - Fatty change (arrows)
- Necrosis of hepatocytes
- Inflammatory cells in portal area extend into the liver parenchyma

Figure (5) Liver (40 x) - formation of bridge (inflammatory reaction) between portal area and central vein