On a weak form separation axioms and continuous functions in ω - bitopological spaces

Zahir D. AL- Nafie and Ameer A. J. AL –Swidi

University of Babylon ,Collage of Education Ibn- Hayaan ,Math. Departement.

Abstract

The aim of this paper is to introduced a new types of separation axioms in bitopological spaces which is defined by an ω - open set which is defined by H.Z .Hdeib[3] in 1982 ,many results and relation ships are studied in this paper

Key words: ω - open set, pre-open set , α –open set ,separation axioms , bitopological space.

1. Introduction:

A bitopological space is a non – empty set X with two topologies $\tau 1$, $\tau 2$ defined on it or it is the triple(X, $\tau 1$, $\tau 2$) ,such that (X, $\tau 1$),(X, $\tau 2$) are two topological spaces defined on X, AL- Swidi and Asaad M. A.Alhosaini [1], introduced a new notions on an ij- ω - open set in bitopological spaces in 2011

The concept of pre open sets ,semi open sets, β open sets, α open sets ,and b open sets were introduced by (cf. [2,4,6,7]) and extended by (cf. [9,10]).

Let (X,τ) be a topological space, $A \subset X$, a point $x \in X$, is called a condensation point if for each $U \in \tau$ with $x \in U$, the set $U \cap A$ is uncountable. A is said to be an ω -closed if it contains all its condensation points, the complement of ω -closed is said to be ω -open set .equivalently a set W is ω -open if for each $x \in W$, there exist $U \in \tau$ with $x \in U$ and U-W is countable[3].

The family of all ω -open set in(X , τ) , denoted by τ_{ω} ,forms a topology on X finner than τ .the ω -closure and ω -interior of a set A will be denoted by cl $_{\omega}$ A and int $_{\omega}$ A resp. , are defined by:

```
\operatorname{cl}_{\omega} A = \bigcap \{ F \subset X/F \text{ is } \omega\text{-closed and } A \subset F \}

\operatorname{int}_{\omega} A = \bigcup \{ G \subset X/G \text{ is } \omega\text{-open and } G \subset A \}
```

In 2009 [10]T.Noiri ,A, AL- Omari ,M,S,M. Lorain introduced and discussed a new notions called(α - ω -open, pre- ω –open ,and b- ω –open) sets in topological spaces.

1.1. **Definition** [4,9]

Let (X, τ_1, τ_2) be a bitopological space, $A \subset X$, A is said to be

- (i) ij-p open set if $A \subset i$ -int(j-clA).
- (ii) ij-s open set if $A \subset j$ -cl(i-intA).
- (iii) ij- α open set if A \subset i-int(j-cl(i-int A))).
- (iv) ij- β open set if $A \subset j$ -cl(i-int(j-clA)).
- (v) ij-b open set if $A \subset i$ -int(j-clA) \cup j-cl(i-intA).

(p-open denotes pre open ,and s-open denotes semi open). $i,j \in \{1,2\}$.

2. weak Forms of ω -Open Sets in Bitopological Spaces

2.1.Definition[10]

let(X, $\tau_1 \tau_2$) be a bitopological space, A \subset x, A is said to be:

- ij- pre ω open ,if A \subset i-int (j-cl $_{\omega}$ A).
- ij- semi ω open ,if $A \subset j$ -cl(i-int αA).
- ij- $\alpha \omega$ open ,if A \subset i-int(j-cl α (i-int A)).
- ij- $\beta \omega$ open ,if $A \subset j$ -cl(i-int $_{\omega}$ (j-clA)).
- ij- b ω open ,if A \subset i-int(j-cl_{ω}A) \bigcup j-cl(i-int_{ω}A).

The set ij-pre ω open(ij-semi ω open) will be denoted briefly ij-p ω open (ij-s ω open).

2.2 .Remark [1]

It is clear by definition that in any bitopological space the following hold

- (i) every i-open set is ij- pre $\ open$, ij-s $\ open$, ij- α open, ij- β open and ij-b open set
 - (ii) every ij- pre open set is ij- β open.
 - (iii) every ij-α open set is ij-s open.
 - (iv) every ij- pre open (ij-s open)set is -b open set.
 - (v) the concept of ij-pre open and (ij-s open) sets are independent.
 - (vi) the concept of ij- α open and ij- β open sets are independent.

2.3. Lemma[1]

- (i) every $ij-\alpha \omega$ open set is $ij-p \omega$ open.
- (ii) every ij-s ω open set is ij-b ω open.
- (iii) every ij-s ω open set is ij- $\beta \omega$ open.
- (iv) every $ij-\alpha \omega$ open set is $ij-\beta \omega$ open.
- (v) the sets ij-p ω open and ij-s ω open are independent.

pdfMachine - is a pdf writer that produces quality PDF files with ease! Get yours now!

2.4.Definition

For $i \neq j, i, j \in \{1,2\}$, A bitopological space $(X, \tau 1, \tau 2)$ is said to be: 1-pairwise semi ωT_0 -space if for any point $x \in X$ there are two ij -s ω open sets G and H such that $x \in G, x \notin H$, and it is denoted by ps ωT_0 -space.

2-pairwise $\alpha \omega T_0$ -space if for any point $x \in X$ there are two ij $-\alpha \omega$ open sets G and H such that $x \in G$, $x \notin H$, and it is denoted by $p\alpha \omega T_0$ -space.

3- pairwise pre ωT_0 -space if for any point $x \in X$ there are two ij-p ω open sets G and H such that $x \in G, x \notin H$, and it is denoted by pp ωT_0 -space.

4-pairwise b ωT_0 -space if for any point $x \in X$ there are two ij -b ω open sets G and H such that $x \in G$, $x \notin H$, and it is denoted by $pb \omega T_0$ -space.

5-pairwise $\beta \omega T_0$ -space if for any point $x \in X$ there are two ij $-\beta \omega$ open sets G and H such that $x \in G$, $x \notin H$, and it is denoted by $\beta \omega T_0$ -space.

2.5. Proposition

Any pa ωT_0 -space is p ωT_0 -space.

Proof:

Let X is $p\alpha \omega T_0 \to$ for any point $x \in X$ there are two $ij - \alpha \omega$ open sets G and H such that $x \in G, x \notin H$, by lemma(2.3) G and H are two $ij - \omega$ open sets, hence the result.

2.6. Proposition

- a- any ps ωT_0 -space is pb ωT_0 -space
- b- any ps ωT_0 -space is p $\beta \omega T_0$ -space
- c- any pa ωT_0 -space is p $\beta \omega T_0$ -space

proof:

same proof of theorem a bove and lemma (2.3).

2.7. Definition

For $i \neq j, i, j \in \{1,2\}$, A bitopological space (X, $\tau 1$, $\tau 2$) is said to be:

- 1- pairwise semi ωT_1 -space if for any pair of distinct points $x \neq y \in X$ there are two ij-s ω -open sets G and H such that $x \in G, x \notin H$, and $y \in H, y \notin G$ and it is denoted by ps ωT_1 -space.
- 2- pair wise $\alpha \omega T_1$ -space if for any pair of distinct points $x \neq y \in X$ there are two ij- α ω -open sets G and H such that $x \in G, x \notin H$, and $y \in H, y \notin G$ and it is denoted by $p \alpha \omega T_1$ -space.
- 3- pairwise pre ωT_1 -space if for any pair of distinct points $x \neq y \in X$ there are two ij-p ω -open sets G and H such that $x \in G, x \notin H$, and $y \in H, y \notin G$ and it is denoted by pp $\omega T1$ -space.
- 4-Pair wise $b\omega T_1$ -space if for any pair of distinct points $x \neq y \in X$ there are two ijb ω -open sets G and H such that $x \in G, x \notin H$, and $y \in H, y \notin G$ and it is denoted by $pb\omega T_1$ -space
- 5- pair wise β ωT_1 -space if for any pair of distinct points $x \neq y \in X$ there are two ij- β ω -open sets G and H such that $x \in G, x \notin H$, and $y \in H, y \notin G$ and it is denoted by $\beta \omega T_1$ -space

2.8. Proposition

Any pa $\omega T1$ -space is pp $\omega T1$ -space.

Proof:

Let X is $p\alpha \omega T1 \rightarrow$ for any pair of distinct points $x \neq y \in X$ there are two ij $-\alpha \omega$ open sets G and H such that $x \in G, x \notin H$, and $y \in H, y \notin G$, and by lemma (2.3) G and H are two ij-p ω open, hence the result.

2.9. Proposition

```
a- any ps \omega T_1-space is pb \omega T_1-space
```

b- any ps ωT_1 -space is p $\beta \omega T_1$ -space

c- any pa $\omega T1$ -space is p $\beta \omega T1$ -space

proof:

same proof of theorem a bove and lemma (2.3).

2.10 Definition

For $i \neq j, i, j \in \{1,2\}$, A bitopological space $(X, \tau 1, \tau 2)$ is said to be:

- 1- pair wise semi ωT_2 -space if for any pair of distinct points $x \neq y \in X$, there are two ij $-\omega$ open sets G and H such that $x \in G$, $y \in H$, and $G \cap H = \phi$ and it is denoted by ps ωT_2 -space.
- 2- pair wise $\alpha \omega T_2$ -space if for any pair of distinct points $x \neq y \in X$, there are two ij- $\alpha \omega$ -open sets G and H such that $x \in G$, $y \in H$, and $G \cap H = \phi$ and it is denoted by $p\alpha \omega T_2$ -space.

3-pair wise p ωT_2 -space if for any pair of distinct points $x \neq y \in X$, there are two ij-p ω -open sets G and H such that $x \in G$, $y \in H$, and $G \cap H = \phi$ and it is denoted by pp ωT_2 -space.

4-pair wise b ωT_2 -space if for any pair of distinct points $x \neq y \in X$, there are two ij- b ω -open sets G and H such that $x \in G$, $y \in H$, and $G \cap H = \phi$ and it is denoted by pb ωT_2 -space.

5-pair wise β ωT_2 -space if for any pair of distinct points $x \neq y \in X$, there are two ij- β ω -open sets G and H such that $x \in G$, $y \in H$, and $G \cap H = \phi$ and it is denoted by $\beta \omega T_2$ -space

2.11 Proposition

Any pa ωT_2 -space is pp ωT_2

Proof:

Let X is $p\alpha \omega T_2 \to \text{ for any pair of distinct points } x \neq y \in X$, there are two ij $-\alpha \omega$ open sets G and H such that $x \in G$, $y \in H$, and $G \cap H = \phi$, by lemma(2.3) G and H are two ij-p ω open sets, and hence the result.

2.12 Proposition

- a- any ps ωT_2 -space is pb ωT_2 -space.
- b- Any ps ωT_2 -space is p $\beta \omega T_2$ -space.
- c- Any pa ωT_2 -space is p $\beta \omega T_2$ -space.

Proof:

Same proof of theorem above and by using lemma (2.3).

pdfMachine - is a pdf writer that produces quality PDF files with ease! Get yours now!

2.13 Proposition

- a- any p ωT_2 -space is p $\omega T1$ -space.
- b- Any p $\omega T1$ -space is p ωT_0 -space.

Proof:

- (a) clear by definitions of $p \omega T_2$ and $p \omega T_1$
- (b) clear by definitions of p $\omega T1$ and p ωT_0

2.14 Example

Let $X = \{a,b,c,d\}$ and $\tau_1 = \tau_2 = \{\emptyset,X,\{b\},\{a,b\},\{b,c\},\{a,b,c\}\}\}.$

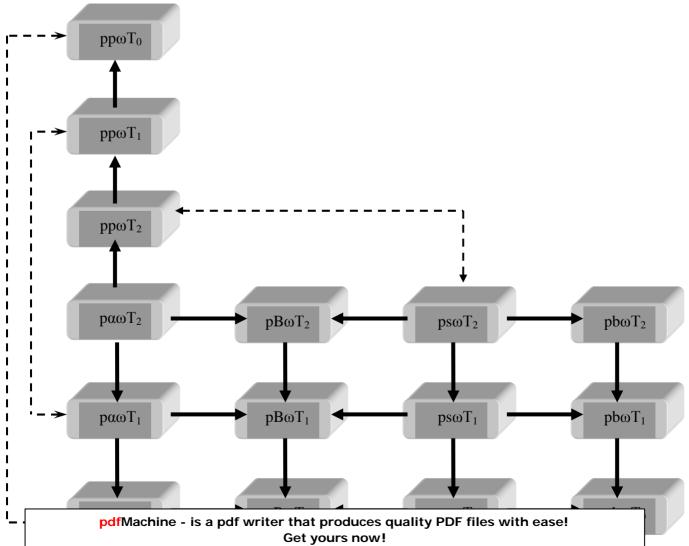
Then X is $p\alpha \omega T_0$ ($pp \omega T_0$, $ps \omega T_0$, $p\beta \omega T_0$) but it is not $p \alpha \omega T_1$ ($pp \omega T_1$, $ps \omega T_1$, $p\beta \omega T_1$).

2.15 Example

Let $X \neq \emptyset$, and $\tau_1 = \tau_2$ are the excluding point topologies, then X is pb ωT_0 but not p $b\omega T_1$.

2.16 Example

Let X is infinite set and $\tau_1 = \tau_2$ are the cofinite topologies then X is $p\alpha \omega T1$ (pp $\omega T1$, ps ωT_1 , ps ωT_1 , ps ωT_1) but it is not $p\alpha \omega T_2$ (pp ωT_2 , ps ωT_2 , ps ωT_2). The following diagram show us the relation ships between these spaces.



"Thank you very much! I can use Acrobat Distiller or the Acrobat PDFWriter but I consider your product a lot easier to use and much preferable to Adobe's" A.Sarras - USA

Where \longrightarrow means the arrow is not reversible and \longleftarrow \longrightarrow Means the arrows is independent.

3. some new types of continuous functions

3.1 Definition:

For $i \neq j, i, j \in \{1,2\}$, a function $f: (X, \tau_1, \tau_2) \to (Y, \rho_1, \rho_2)$ is said to be $ij - s\omega - (\text{resp.} ij - \alpha\omega, ij - p\omega, ij - b\omega, ij - \beta\omega)$ open function if f(U) is $ij - s\omega - (\text{resp.} ij - \alpha\omega, ij - p\omega, ij - b\omega, ij - \beta\omega)$ open set in Y for each $ij - s\omega - (\text{resp.} ij - \alpha\omega, ij - p\omega, ij - b\omega, ij - \beta\omega)$ open set U in X.

3.2 Definition:

For $i \neq j, i, j \in \{1,2\}$, a function $f: (X, \tau_1, \tau_2) \to (Y, \rho_1, \rho_2)$ is said to be $ij - s\omega - (\text{resp. } ij - \alpha\omega, ij - p\omega, ij - b\omega, ij - \beta\omega)$ continuous function if $f^{-1}(U)$ is $ij - s\omega - (\text{resp. } ij - \alpha\omega, ij - p\omega, ij - b\omega, ij - \beta\omega)$ open set in X for each $ij - s\omega - (\text{resp. } ij - \alpha\omega, ij - p\omega, ij - b\omega, ij - \beta\omega)$ open set U in Y.

3.3 Proposition:

- i) any $ij \beta \omega$ -continuous function is $ij \alpha \omega$ -continuous
- ii) any $ij s\omega$ continuous function is $ij \alpha\omega$ continuous
- iii) any $ij \alpha \omega$ -continuous function is $ij p\omega$ -continuous
- iv) any $ij b\omega$ -continuous function is $ij s\omega$ continuous

proof:(i)

let $f:(X,\tau_1,\tau_2) \to (Y,\rho_1,\rho_2)$ be a $ij-\beta\omega$ -continuous function, and U is $ij-\beta\omega$ -open set in $Y \Rightarrow f^{-1}(U)$ is $ij-\beta\omega$ -open set in X, since any $ij-\alpha\omega$ -open set is $ij-\beta\omega$ -open set $\Rightarrow U$ and $f^{-1}(U)$ are $ij-\alpha\omega$ -open sets, hence f is $ij-\alpha\omega$ -continuous.

Proof:(ii),(iii) and(iv)

Obvious by definitions and lemma(2.3).

3.4 Remark:

the converse of each one of proposition above need not true, which can be summarized by the following example.

3.5 Example:

Let X={a,b,c}, τ_1 ={X,Ø,{a},{a,b}}, τ_2 ={X,Ø,{c}} and Y={1,2,3}, ρ_1 ={Y, Ø,{1},{1,2}, ρ_2 ={Y,Ø,{3}} and $f:(X,\tau_1,\tau_2) \to (Y,\rho_1,\rho_2)$ be a function defined by f (a)= 1, f (b)= f (c)=2 and, then f is $12 - \alpha \omega$ -continuous but neither $12 - \beta \omega$ -continuous nor $12 - s\omega$ - continuous.

The following diagram shows the relationships between these functions.

$$ij - \beta\omega$$
 -continuous $\Rightarrow ij - \alpha\omega$ -continuous $\Rightarrow ij - p\omega$ -continuous $\uparrow ij - s\omega$ - continuous $\Leftarrow ij - b\omega$ -continuous

pdfMachine - is a pdf writer that produces quality PDF files with ease! Get yours now!

3.6 Proposition:

Let $f:(X,\tau_1,\tau_2) \to (Y,\rho_1,\rho_2)$ be a bijective $ij-s\omega$ – open function ,then (Y,ρ_1,ρ_2) is ps $\omega T1$ -space if (X,τ_1,τ_2) is ps $\omega T1$ -space.

Proof:

Let $y_1 \neq y_2 \in Y$, since f is 1-1 \Rightarrow there exist $x_1 \neq x_2 \in X$ such that $f(x_1) = y_1, f(x_2) = y_2 \in X$, since (X, τ_1, τ_2) is ps $\omega T1$, then there are two ij-s ω -open sets G and H such that $x_1 \in G$, $x_2 \notin G$ nd $x_2 \in H$, $x_1 \notin H$ $\Rightarrow y_1 = f(x_1) \in f(G)$ but $y_2 = f(x_2) \notin f(G)$ and $y_2 = f(x_2) \in f(H)$ but $y_1 = f(x_1) \notin f(H)$, since f is onto $ij - s\omega$ – open function, hence f(H), f(G) are $ij - s\omega$ – open sets in (Y, ρ_1, ρ_2) , then (Y, ρ_1, ρ_2) is ps $\omega T1$ -space.

3.7 Proposition:

Let $f: (X, \tau_1, \tau_2) \to (Y, \rho_1, \rho_2)$ be a bijective $ij - \alpha \omega$ (resp., $ij - p\omega$, $ij - b\omega$, $ij - \beta\omega$) open function then (Y, ρ_1, ρ_2) is $p \alpha \omega T_1$ (resp. $pp \omega T1$, $pb\omega T_1$.

Proof:

Same proof of proposition above and by replacing $ij - s\omega$ – open set by $(ij - \alpha\omega, ij - p\omega, ij - b\omega, ij - \beta\omega)$ open set.

3.8 Proposition:

Let $f: (X, \tau_1, \tau_2) \to (Y, \rho_1, \rho_2)$ be a bijective $ij - s\omega$ – open function ,then (Y, ρ_1, ρ_2) is ps ωT_2 -space if (X, τ_1, τ_2) is ps ωT_2 -space.

Proof:

Let $y_1 \neq y_2 \in Y$, since f is 1-1 \Rightarrow there exist $x_1 \neq x_2 \in X$ such that $f(x_1) = y_1, f(x_2) = y_2 \in X$, since (X, τ_1, τ_2) is ps ωT_2 -space, then there are two ijs ω -open sets G and H such that $x_1 \in G$ and $x_2 \in H, G \cap H = \phi \Rightarrow$

 $y_1 = f(x_1) \in f(G)$ and $y_2 = f(x_2) \in f(H)$ and $f(G \cap H) = f(G) \cap f(H) = \phi$ since f is onto $ij - s\omega$ – open function ,then f(G), f(H) are $ij - s\omega$ – open sets in (Y, ρ_1, ρ_2) , then (Y, ρ_1, ρ_2) is ps ωT_2 -space.

3.9 Proposition:

Let $f:(X,\tau_1,\tau_2) \to (Y,\rho_1,\rho_2)$ be a bijective $ij - \alpha\omega$ (resp., $ij - p\omega$, $ij - b\omega$, $ij - \beta\omega$) open function then (Y,ρ_1,ρ_2) is $p \alpha\omega T_2$ (resp. $pp \omega T_2$, $pb\omega T_2$, $pb\omega T_2$) if (X,τ_1,τ_2) is $p\alpha\omega T_2$ (resp. $pp\omega T_2$, $pb\omega T_2$, $pb\omega T_2$).

Proof:

Same proof of proposition above and by replacing $ij - s\omega$ – open set by $(ij - \alpha\omega, ij - p\omega, ij - b\omega, ij - \beta\omega)$ open set.

pdfMachine - is a pdf writer that produces quality PDF files with ease! Get yours now!

3.10 Proposition:

Let $f:(X,\tau_1,\tau_2) \to (Y,\rho_1,\rho_2)$ be a 1-1 and $ij-s\omega$ – continuous function ,if (Y,ρ_1,ρ_2) is ps ωT_2 -space then (X,τ_1,τ_2) is ps ωT_2 -space.

Proof:

Let $x_1 \neq x_2 \in X$, since f is $1-1 \Rightarrow f(x_1) \neq f(x_2) \in Y$, since (Y, ρ_1, ρ_2) is ps ωT_2 -space, then there are two ij-s ω -open sets G and H in X such that $f(x_1) \in G$ and $f(x_2) \in H$, $G \cap H = \phi \Rightarrow x_1 \in f^{-1}(G)$, $x_2 \in f^{-1}(H)$, $f^{-1}(G \cap H) = f^{-1}(G) \cap f^{-1}(H) = \phi$, since f is $ij - s\omega$ – continuous then $f^{-1}(G)$, $f^{-1}(H)$ are $ij - s\omega$ – open sets in (X, τ_1, τ_2) , hence (X, τ_1, τ_2) is ps ωT_2 -space.

3.11 Proposition:

Let
$$f: (X, \tau_1, \tau_2) \to (Y, \rho_1, \rho_2)$$
 be a 1-1, $ij - \alpha \omega$ (resp., $ij - p\omega$, $ij - b\omega$, $ij - \beta\omega$) continuous function then (X, τ_1, τ_2) is $p \alpha \omega T_2$ (resp. $pp \omega T_2$, $pb\omega T_2$, $pb\omega T_2$) if (Y, ρ_1, ρ_2) is $p\alpha \omega T_2$ (resp. $pp \omega T_2$, $pb\omega T_2$, $pb\omega T_2$).

Proof:

Same proof of proposition above and by replacing $ij - s\omega$ – open set by $(ij - \alpha\omega, ij - p\omega, ij - b\omega, ij - \beta\omega)$ open set.

References:

- [1] A. AL- swidi ,Luay ,M. A. Alhosaini ,Asaad ,Weak Forms of ω-Open Sets in Bitopological Spaces and Connectedness , European Journal of Scintific Research ,52 No.2(2011) ,pp. 204-212.
- [2] A. Z. Hdeib, ω-closed mappings, Rev. Colomb. Math. 16 (3-4):65-78 (1982).
- [3] T. Noiri, A. Al-Omari and M. S. M. Noorani, Weak form of ω -open sets and Decomposition of continuity, European J. of pure and Applied Math. Vol.2, No. 1,2009, (73-84).
- [4] D. Andrijevic, On b-open sets, Math. Vesnik 48: 59-64 (1996).
- [5] K. Chandrasekhara Rao and D. Narasimhan ,Semi Star Generalized ω-closed Sets in Bitopological Spaces , Int.J. Math. Sciences Vol.4,2009,No.12,587-595.
- [6] M. E. Abd El-Monsef, S.N. El-Deeb, and R.A. Mahmoud, β-open Sets andβ-Continuous Mappings, Bull. Fac. Sci. Assiut Univ., 12(1983), pp.77-90.
- [7] N. Levine ,Semi –open sets and semi continuity in topological spaces , Amer. Math. Monthly,70(1963) ,36-41.
- [8] O. A. El-Tantawy and H. M. Abu-Donia, Generalized Separation Axioms in Bitopological Spaces, The Arabian Journal for Scientific and Engineering ,Vol.30.Number 1A.
- [9] S.Sampath.Kumar, On a Decomposition of Pairwise Continuity, Bull.Cal. Math. Soc., 89(1997), pp.441-446.
- [10] T. Noiri, Al-Omari and M.S.M. Noorani, Weak forms of ω -open sets and decomposition of continuity, European J. of Pure and Applied Math.Vol.2,No. 1,2009,(73-84).