إلى/ د. حيدر جبار عبود المحترم
الدكتورة أفكار مزراعة طالب المحررة
جامعة بابل / كلية التربية / قسم الرياضيات

م/ قبول نشر

تحية طيبة
تدارست هيئة التحرير البحث المقدم من قبلكم والموصول:
(Solution of parabola equation by using regular Boundary and corner functions)

وبعد الاطلاع على أراء المقومين قررت ميامتي:
قبول البحث ونشره في الإعداد القادمة

 الأم. عبد الأمير كاظم الخضري
نائب رئيس تحرير
مجلة أوروك للابحاث العلمية والإنسانية

تاريخ تحرير: ٢/٦/٢٠٠٩
<table>
<thead>
<tr>
<th>Page Number</th>
<th>Subject</th>
</tr>
</thead>
</table>
| 97-104 | Levels of Mercury in Ground Water at Basrah, South of Iraq.
Faris J. M. Al-Imarah
Abdul-Hameed M. Jawad
Seta A. Kevoork
Dept. Marine Envir. Chem. Marine Science Center, University of Basrah |
| 105-115 | Removal of Cationic Methylene blue Dye by Germanium oxide and Yttrium oxide
Raad K. Al-Sabaag Hussain.
Hayfaa J. Mohammed & J. Mohammed
Dept. Chemistry/College of Education for Girls /Kufa University |
| 119-123 | Evaluation of Interleukin – 6 and Interleukin – 10 levels in serum and seminal plasma of infertile patients
Faran A. Risam
Department of medical laboratory technology – college of health and Medical technology, Foundation of Technical Education, Baghdad – Iraq. |
| 125-134 | Immunosuppression of 1-Hydroxyphenazine Pigment on Delayed Type Hypersensitivity (DTH) reaction against secondary hydatidosis.
Zaman A.A. Ibrahim
Department of Basic Sciences, College of Nursing, University of Baghdad, Iraq |
| 137-144 | On Pr-R0 and Pr-R1 spaces in Btopological Spaces
Ahmed Abed Ali Omran
College of Education
Dept. of Mathematics University of Babylon |
| 145-162 | METHOD FOR SOLVING FRACTIONAL DIFFERENTIAL EQUATIONS WITH THE CAPUTO DERIVATIVES
Ahmed Sabah Ahmed
Department of Mathematics, College of Education.
University Of Babylon |
| 163-169 | SOLUTION OF PARABOLA EQUATION BY USING REGULAR ,BOUNDARY AND CORNER FUNCTIONS
Dr. Hayder Jabbar Abood, Dr. Ifichar Mithar Talb
Department of Mathematics, College of Education.
Babylon University |
| 173-192 | On The dynamics of Henon Map
Ifichar Mithar Talb and Kawa Ahmed Hassan
Department of Mathematics, College of Education.
Babylon University. |
| 193-202 | The Newton's Method on Quartic polynomials
Dr. Hussein Jaber Abdul Hussain
Al-Muthana University – College of Science
Department of Mathematics and Computer Applications |
SOLUTION OF PARABOLA EQUATION BY USING REGULAR, BOUNDARY AND CORNER FUNCTIONS

Dr. Hayder Jabbar Abood, Dr. Iftichar Mudhar Talb
Department of Mathematics, College of Education, Babylon University

Abstract:

We solve convergent sequence by using the parabola equation which have a small positive parameter ξ and find a unique solution for a given convergent sequence.

1-Introduction:

Differential equations are a very important tool for solving many phenomena. There are many authors who studied the applied mathematics as physical mathematics. Levenshtam [4] studied the ordinary differential equations of the first order and the first degree. Dieudonne [1] studied the ordinary equation of the second degree with initial and boundary conditions. Techanoff and Samarcki [5] studied only the partial differential equations of the first order and the first degree with boundary conditions. Levenshtam [3] studied the parabola equation (partial differential equation of the second order and the first degree). They put initial and boundary conditions to solve this equation. They used converge series from uniform function with two boundary functions. They proved the existence and uniqueness of the solution.

One of the mathematical branch which take care by studying phenomena's which comes from the the environment we live in. Several mathematical models are formed for many researchers to solve these phenomena's and really most of these models have a high ability to study see (Kreysig [2] and Smith [6]).

Some effects on the accuracy of the solution may be small and some researchers don't take care to study it and about the importance of these effects may be have an effect on the result, of the phenomena's and inversely, on the other side some researchers are emphatics that these effects must be studied and one of them is (Dieudonne J, [1]), we also like him.

In this work, we develope the research of [5], we study the converge series which is uniform function, two boundary functions and two corner functions (see section 4 equation (6)). We prove the converge function is unique solution of parabola equation.

2-Main problem

In this research, we study the following problem:
\[\xi^2 \left(\frac{\partial u}{\partial t} \right) - \sum_{i=1}^{n} \xi_i f_i (x, t, u) = 0, \quad 0 \leq x \leq \ell, \quad 0 \leq t \leq T. \] \hspace{2cm} (1)

\[u(x, 0, \xi) = \varphi(x), \quad \frac{\partial u}{\partial x}(0, t, \xi) = \frac{\partial u}{\partial x}(\ell, t, \xi). \] \hspace{2cm} (2)

where \(u \) is an arbitrary vector and \(\xi \) a very small positive parameter. We will discuss the problem in the region \(\mathcal{R} = \{ 0 \leq x \leq \ell \} \times \{ 0 \leq t \leq T \} \).

We will prove that the analytic convergent series

\[u(x, t, \xi) = \sum_{i=1}^{n} \xi_i u_i (x, t) \] \hspace{2cm} is a solution for the problem (1) with boundary conditions

and initial condition in (2). In order to prove the existence of a solution for (1) and (2), we find an estimation for the convergent series. In other meaning, for construct like this convergence and for more accurate this contains two functions:

- The first is the function, on the boundary of \(\mathcal{R} \), when \(t = 0, \, x = 0, \, x = \ell \).
- The corner function at the points \((0,0), (0, \xi), (\ell, 0)\) in the region \(\mathcal{R} \).

3-Some Special conditions to Solve The Main Problem

We can find the solution of our main problem (1), and by using the following conditions:

I - The functions \(f(x, t, u, \xi) = \sum_{i=1}^{n} \xi_i f_i (x, t, u) \) and \(\varphi(x) \) which are \((n+2)\) differentiable to construct a convergent series of order \(n \) and satisfy (2) at \((0, 0), (\ell, 0)\) \(\Rightarrow \varphi(0) = \varphi(\ell) = 0 \).

\[f(x, t, u, 0) = 0 \] \hspace{2cm} (3)

II - Equation (3) at the region \(\mathcal{R} \) has an arbitrary solution assume it...
\(\bar{u}_0 = \bar{u}_0(x, t) \)

III - When \(x \) is a parameter \((0 \leq x \leq t) \) then:

\[
\frac{dB_0}{dt} = f(x, t, \bar{u}_0(x, 0) + B_0, 0), \quad t > 0 \] (4)

I \nu - By using of the conditions in (2), the solution of equation (4) becomes

\[
B_0(x, 0) = \phi(x) - \bar{u}_0(x, 0) \] (5)

The convergent series which is analytic with respect to \(\xi \) to solve (1) and (2) it gives as follow:

\[
u(x, t, \xi) - \bar{u}(x, t, \xi) = B(x, t, \xi) + Q(\xi, t, \xi) + Q^* \left(\xi^*, t, \xi \right) + P(\xi, t, \xi) + P^* \left(\xi^*, t, \xi \right), \]

Such that \(\xi = \frac{t-x}{\xi} \), \(\xi^* = \frac{t-x}{\xi^*} \)(6)

Where \(\bar{u} \) is the regular function \(Q, Q^*, B \) boundary functions and \(p, p^* \) the corner functions which are series raised to powers with respect to \(\xi \), for example

\[
\bar{u}(x, t, \xi) = \sum_{i=0}^{\infty} \xi^i \bar{u}_i(x, t). \]

To find the coefficients of these series, we put (6) in (1), (2) and at the function \(\kappa(x, t, u, \xi) \) as follows:

\[
f(x, t, u, \xi) = \sum_{i=0}^{\infty} \xi^i \bar{f}_i(x, t, \bar{u}(x, t) + B(x, t) + Q(\xi, t, \xi) + Q^* (\xi^*, t, \xi) + P(\xi, t, \xi) + P^* (\xi^*, t, \xi) \]

we can write it as below

\[
f = \bar{f} + Bf + Qf + Q^* f + Pf + P^* f \]

such that

\[
\bar{f}(x, t, \xi) = f(x, \xi^2 t, \bar{u}(x, t, \xi)), Bf(x, t, \xi) = f(x, \xi^2 t, \bar{u}(x, \xi^2 t, \xi) + B(x, t, \xi) \xi) \]

\[
Qf(\xi, t, \xi) = f(\xi^2 t, \bar{u}(\xi^2 t, \xi) + Q(\xi, t, \xi) \xi) - \bar{f}(\xi^2 t, \xi), \]

\[
Pf(\xi, t, \xi) = f(\xi^2 t, \bar{u}(\xi^2 t, \xi) + Q(\xi, t, \xi) \xi) + B(\xi^2 t, \xi) + P(\xi, t, \xi) \xi) \]

\[
- B(\xi^2 t, \xi^2 t) - \bar{Q}^* (\xi^2 t, \xi^2 t) - \bar{f}(\xi^2 t, \xi^2 t) \xi^2 t, \xi \]

By the same way, we can define \(Qf, Pf, Q^* f \).

By the standard procedures for the analysis of series with respect to \(\xi \) powers and by putting the coefficients for the equal powers with respect to \(\xi \), we get an equation for any convergent series, for example when \(\xi^0 \):

\((a) \) the function \(u_0 \) has The following equation:

\[
f(x, t, \bar{u}_0, 0) = 0 \]

Which can be found by the correspondence with the equation (3), thus we get \(\bar{u}_0 = \bar{u}_0(x, t) \) and for the functions \(\bar{u}_i(x, t) \), \(i \geq 1 \).

We have the following linear equations \(\bar{f}_i(x, t)\bar{u}_i(x, t) = f_i(x, t) \) where \(f_i(x, t) \) represented by \(\bar{u}_i(x, t) \), \(j < i \) and from this
\(\tilde{u}_i(x,t) = f^{-1}_u(x,t)f_i(x,t) \).

(b) Equation of the function \(B_0(x,t) \) is

\[
\frac{\partial B_0}{\partial t} = B_0 f = f(x,0,\tilde{u}_0(x,0) + B_0(x,t) - f(x,0,\tilde{u}_0(x,0),0)),
\]

this correspond with the equation (4) added to the boundary condition in (5) from the conditions \((I - IV)\), the function \(B_0(x,t) \) have the following exponential estimation (see [1] page 57).

\[
\|B_0(x,t)\| \leq C \exp(-bt), \quad 0 \leq x \leq \ell, \quad \tau > 0 \quad \text{............... (7)}
\]

Where \(b > 0, c > 0 \) are arbitrary constants. The functions \(B_i(x,t) \) when \(i \geq 1 \) is linear with the formula

\[
\frac{\partial B_i}{\partial t} = f_u(x,0,\tilde{u}_0(x,0) + B_0(x,t),0)B_j + \pi_i(x,t)
\]

We define \(B_j(x,0) = -\tilde{u}_i(x,0) \) and \(\pi_i(x,t) \) represented by \(B_i(x,t) \) where \(j < i \).

The solution for these linear equations which possesses the exponential estimation is as in (7).

4- **The Main Results**:

We find the function \(Q_0(\zeta,t) \), where \(t \) is as a parameter from the following equation

\[
-\frac{\partial^2 \phi_0}{\partial t^2} = Q_0 f = f(0,t,\tilde{u}_0(0,t) + Q_0(\zeta,t),0) - f(0,t,\tilde{u}_0(0,t),0)
\]

From the equation (2) for \(Q_i(\zeta,t) \), we get the two conditions

\[
\frac{\partial \phi_i}{\partial \zeta}(0,t) = 0, \quad \frac{\partial \phi_i}{\partial \zeta}(\zeta,t) = -\frac{\partial \tilde{u}_i}{\partial x}, \quad \text{............. (8)}
\]

The boundary condition in (2) gives \(Q_i(\zeta,t) \to 0 \) when \(\zeta \to \infty \), \(i \geq 0 \) so \(Q_0(\zeta,t) \to 0 \) while the functions \(Q_i(\zeta,t) \), \(i \geq 1 \) are defined from the linear equations , \((\zeta \text{ constant coefficient}) \)

\[
-\frac{\partial^2 \phi_i}{\partial \zeta^2} = f_u(0,t)Q_i + q_i(\zeta,t)
\]

We can find \(q_i(\zeta,t) \) through the functions \(Q_j(\zeta,t) \), \(j < i \). The solutions of (8) and (9) and from condition III with the boundary condition ,we get the single values which have the following exponential estimation

\[
\|Q_i(\zeta,t)\| \leq C \exp(-b\zeta), \quad \zeta \geq 0, \quad 0 \leq t \leq T \quad \text{............... (10)}
\]

The function \(P(\zeta,t) \) has a role to make the function \(B \) active with the boundary conditions and the function \(Q \) with its initial condition also, the linear differential equation for \(P_0(\zeta,t) \) is
\[
\frac{\partial p_0}{\partial \tau} - \frac{\partial^2 p_0}{\partial \zeta^2} = p_0 f = f(0,0,\bar{u}_0(0,0) + B_0(0,\tau) + P_0(\zeta,\tau),0) - f(0,0,\bar{u}_0) + B_0(0,\tau),0), \quad \zeta > 0, \tau > 0
\]

By substitution (6) in the conditions of (2) and for the function \(P_i(\zeta,\tau)\) we get
\[
p_0(\zeta,0) = 0, \quad \frac{\partial p_0}{\partial \zeta}(0,\tau) = 0 \quad \text{.......................... (11)}
\]
\[
p_i(\zeta,0) = q_i(\zeta,0), \quad \frac{\partial p_i}{\partial \zeta}(0,\tau) = -\frac{\partial B_{i-1}}{\partial \zeta}(0,\tau), i \geq 1 \quad \text{............... (12)}
\]

From the conditions (11) and (12), the function \(p\) is boundary function for both variables, that is \(p_i(\zeta,\tau) \to 0\) when \(\sqrt{\zeta^2 + \tau^2} \to \infty\) \quad \text{............... (13)}

At \(p_0(\zeta,\tau) \equiv 0\), while the functions \(p_i(\zeta,\tau)\) can be defined from the linear parabola

\[
A(\tau) = P_0(0,0,\bar{u}_0(0,0) + B_0(0,\tau),0).
\]

The function \(H_i(\zeta,\tau)\) represents the functions \(Q_j, B_j, j \leq i\) and \(p_j, i > j\). The solutions of (12) and (14) can be defined [3, 4] by
\[
p_i(\zeta,\tau) = g(\zeta,\tau) + \int_0^\infty \int_0^\infty G(\zeta,\tau,\zeta_0,\tau_0) H(\zeta_0,\tau_0) d\zeta_0 d\tau_0;
\]

where \(g(\zeta,\tau)\) is an arbitrary function which is differentiable (smooth) satisfy the conditions (12) and (13)
\[
H_i(\zeta,\tau) = H_i(\zeta,\tau) - \frac{\partial \zeta}{\partial \tau} + \frac{\partial^2 g}{\partial \zeta^2} + A(\tau) g.
\]

\[
G(\zeta,\tau,\zeta_0,\tau_0) = \frac{1}{2\sqrt{\pi}(\tau - \tau_0)} \left[\exp\left[\frac{-\zeta - \zeta_0}{4\alpha(\tau - \tau_0)} \right] + \exp\left[\frac{-\zeta + \zeta_0}{4\alpha(\tau - \tau_0)} \right] \right], \quad \text{where}
\]

\(\phi(\tau)\) is fundamental matrix have the following exponential estimation [1]:

\[
\|\phi(\tau)\phi^{-1}(\tau_0)\| \leq C \exp[-b(\tau - \tau_0)], \quad \text{thus the exponential estimation for the function } p \text{ becomes:}
\]

\[
\|p_i(\zeta,\tau)\| \leq C \exp[-C(\zeta + \tau)], \quad \zeta \geq 0, \tau \geq 0 \quad \text{.. (15)}
\]

To find the estimation of the functions \(P^*, Q^*\) by same method used for \(P\) and \(Q\) and having the same exponential estimation as in (10) and (15) \(U_n\) represent to the convergent series of order \(n\) for the series(6)
\[
U_n = \sum_{i=0}^n \phi_i(x,\tau) + B_i(x,\tau) + Q_i(\zeta,\tau) + Q_i^*(\zeta,\tau) + P_i(\zeta,\tau) + P_i^*(\zeta,\tau)
\]

Therefore the following statement is valid.

Uruk for Scientific Researches

(167)

No. 2, May 2009
Theorem (5-1):

If the conditions (1 - IV) are valid then \(u(x,t,\xi) (\xi \text{ small parameter}) \) have a unique solution to the problems (1), (2) and for the uniform convergent series \(U_n \) in \(R \) converges to the estimation \(O(\xi^{n+1}) \) i.e. \(\max_R \| u - U_n \| = O(\xi^{n+1}) \)

Proof:
Let \(w = u - U \)

\(U = U_n + \xi^{n+1} (Q_{n+1} + Q_{n+1} + P_{n+1} + P_{n+1}) \), where \(U_n \) the partial convergent series defined in (6).

Thus we have the following equation:

\[\xi^2 \left(\frac{\partial^2 w}{\partial t^2} - \frac{\partial^2 w}{\partial x^2} \right) - f_w(x,t,\xi)w = h(w,x,t,\xi) \] (17)

where \(f_w(x,t,\xi) = \frac{\partial^2 W}{\partial t^2} (x,t) + B_0 \frac{x}{\xi} (x,t,\xi) x, t) \),

\[h(w,x,t,\xi) = f(U + w, x, t, \xi) - \xi^2 \left(\frac{\partial U}{\partial t} - \frac{\partial^2 U}{\partial x^2} \right) - f_w(x,t,\xi)w \]

The function \(h(w,x,t,\xi) \) have the following two properties:

1- when \(w = 0 \), it is clear that the equation

\[h(0, x, t, \xi) = f(U, x, t, \xi) - \xi^2 \left(\frac{\partial U}{\partial t} - \frac{\partial^2 U}{\partial x^2} \right) = O(\xi^{n+1}) \]

2- If \(\| w_i(x, t, \xi) \| \leq c_i \xi, i = 1, 2 \) then there exist \(c_i > 0, \xi > 0 \) such that \(0 < \xi \leq \xi_0 \) satisfy the following inequality

\[\sup_R \| h(w_2, x, t, \xi) - h(w_1, x, t, \xi) \| \leq C_2 \sup_R \| w_2 - w_1 \|

By using (Green's matrix), equation (1) with conditions (2), (3) becomes

\[w(x,t,\xi) = \int_0^T \int_0^L G(x,t,x_0,t_0,\xi)h(w(x_0,t_0,\xi),x_0,t_0,\xi)dx_0dt_0 = L(w,x,t,\xi) \] (18)

From condition III, Green's matrix have the estimation (Techanoff, Samarcki [4]):

\[\| G(x,t,x_0,t_0,\xi) \| \leq \frac{c}{\xi^2} \frac{1}{\sqrt{t-t_0}} \exp[-c \frac{t-t_0}{\xi^2}] \exp[-c \frac{(x-x_0)^2}{t-t_0}] \]

By applying the theorem of the convergence of sequences for the equation (18), we get

\[w_0 = 0, w_{n+1} = L(w_n, x, t, \xi), i = 1, 2, \ldots \]

From above, we concluded that \(w(x,t,\xi) \) is a unique solution for (2) when \(\xi \) is a small parameter and have the estimation

\[\max_R \| w(x,t,\xi) \| = O(\xi^{n+1}) \] (18)

\[\max_R \| U - U_n \| = O(\xi^{n+1}) \]

Uruk for Scientific Researches (168) No. 2, May 2009
References:

الخلاصة:

في هذا البحث نحل منتبحة متقاربة باستخدام معادلة قطع مكافئ والتي تمتلك ميلة صغيرة وإيجاد حل وحيد لتلك المتتابعة المتقاربة.