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Abstract

      Rao (1945) proposed a method, based on Fisher’s information matrix, for measuring distance between distributions of a parametric family satisfying certain regularity conditions. In this paper, Rao’s method is applied to obtain the distance between two negative binomial distributions. Some other properties are discussed too.

الخلاصة
        افترض راو طريقة، معتمدة على مصفوفة معلومات فشر، لقياس المسافة بين توزيعات العائلة المعلمية تحقق شروط قياسية معينة.
      في هذا البحث، طريقة راو طبقت لاستخراج المسافة بين توزيعين ثنائي الحدين السالب. كذلك نوقشت بعض الخواص الأخرى.
1. Introduction

      The question of introducing a distance between different statistical populations has been considered by various authors. If we assume that all the information for constructing such a distance is contained in the probability density function of a random vector X, supposedly existing and restricted to each population, it will not be generally satisfactory to characterize each populations by their mean value of the random vector X, since the latter does not determine uniquely the probability density function associated with each population.

      A reasonable alternative would be to allow that the probability density function of the random vector X, in any of the populations studied, to belong to a certain parametric family, 
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/

(.

q

p

 Thus, a population could be characterized by 
[image: image2.wmf]),

....,

,

(

1

n

q

q

q

=

element of a parametric space 
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      It is also reasonable to require that the proposed distance on the parametric space 
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posseses the property of being invariant under any admissible transformation of the parameters, since the latter does not affect the probability density function, 
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of the random vector X. In addition, the distance has to be invariant for admissible transformations of the random vector X, since it must be independent of the method by which the measurements are attained.

      The method proposed by Rao is studied latter by (Atkinson and Mitchell, 1981) and (Burbea and Rao, 1982), allow us to define a distance on the parametric space 
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 EMBED Equation.3  [image: image7.wmf]with the above mentioned characteristics. If the parametric family satisfy certain regularity conditions, the Fisher information matrix defines a covariant symmetric tensor field of the second order on the parametric space 
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and may also be taken as a metric tensor field on 
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, thereby rendering 
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 as a Riemannian manifold. The Rao distance between two points 
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 is then defined as their geodesic distance with respect to the metric induced by the equation (1). While (Josep and Carles, 1985) applied Rao’s method to obtain a distance between two negative multinomial distributions and (Gruber, 2003) applied this method to find the distance for the normal distributions.
      In this paper, Rao’s method is applied to obtain a distance between two negative binomial distributions. We also discuss some other differential geometric properties of these distributions.
2. Definitions and Basic Concepts

2.1 Tensor (Lipschutz, 1969; Stefan, 2002) 
      An nth- rank tensor in m- dimensional space is a mathematical object that has n indices and 
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 components and obeys certain transformation rules. Each index of a tensor ranges over the number of dimensions of space. However, the dimension of the space is largely irrelevant in most tensor equations (with the notable exception of the contracted kronecker delta). Tensors are generalizations of scalars (that have no indices), vectors (that have exactly one index), and matrices (that have exactly two indices) to an arbitrary number of indices.                                                                       
      The metric tensor is a tensor of rank 2 that is used to measure distance between any two points in a given space.                                                                          
Definition (2.1.1) (Wasan, 2006)                                    

       Let M be a surface determined by
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or in differential notation                                                                                                  
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Where
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Definition (2.1.2) (Wasan, 2006)
      The matrix of the first fundamental form of a surface M determined by 
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where E, F, G are as defined in formula (4). This matrix determines dot products of tangent vectors.                                                                                                                

Notation (Gardner, 2000)
      We now replace the parameters u and v with u1 and u2 in formula (3).                                                                                                                
We then have                                                                                                               
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where the summation is taken over the set {1, 2}. 
2.2 Riemannian Metrics Based on Fisher Information(Gruber, 2003) 
        We define the coefficients of the expected Fisher information matrix as equal to the coefficients of the first fundamental form (Riemannian metric) on the space of probabilities, known as Fisher information metric, which it is a metric tensor for a statistical differential manifold. It can be used to calculate the informational difference between measurement. It takes the following form where f(x,θ) be a class of probability densities.                         
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which can be thought of intuitively as:
“The distance between two points on a statistical differential manifold is the amount of information between them, i.e. the informational difference between them”.                                                
An equivalent form of the above equation is:                                                      
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We define the coefficients of the first fundamental form as:                               
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where 
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 are two parameters of the probability density functions. It is clear that E, F and G are functions of the parameters 
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 . The expectations apply to the whole sample space where the random variables are defined.
 2.3 Riemannian Metrics and Geodesics (Gruber, 2003)
      We know that f(x,θ) be a class of probability densities, e.g. normal, binomial. Suppose that Θ be the set of all the values of the                                        

parameter θ (Θ is a subset of Rn ).      
      Assume that θ= (
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Θ. Consider a quadratic differential metric in the form
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      Let 
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 represents a curve that joins the points in Θ 
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. Let C represents the set of all such curves. The geodesic distance between P and Q will be defined by
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      A curve for which this minimum is assumed will be called a geodesic curve. This curve may be found using the calculus of variations as a solution to the Euler Lagrange equations. For this problem they take the form of a system of ordinary differential equations                                                                                                        
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 With boundary conditions of the form 
[image: image46.wmf]b

q

a

q

=

=

)

(

,

)

(

2

1

t

t

 where

[image: image47.wmf]ú

ú

û

ù

ê

ê

ë

é

¶

¶

-

¶

¶

+

¶

¶

=

G

k

ij

j

ki

i

jk

ijk

g

g

g

q

q

q

2

1

                                           (11)
2.4 Fisher Information Rao Distances between Probability                   
    Distributions (Gruber, 2003)       
      We defined the elements of the Fisher information matrix as in form (7).                                                                                                  
By substitution of the probability density into (7) the elements of the Fisher information (7) matrix and the Christoffel symbols (11) may be obtained. The system of equations (10) may be solved to get the geodesic curve and the geodesic distance may be obtained using (9). The geodesic distance may now be computed between two pdfs.
3. Rao’s Distance for Negative Binomial Distributions
[image: image48.wmf]
      We obtain the family of negative binomial distributions 
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In this case
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where 
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 is a Kronecker delta.
      We proceed to calculate the Riemann- Christoffel tensor of the first kind (covariant curvature tensor) 
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 of the metric (14 ). This gives
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The Riemannian curvature K is therefore equal to zero. 




The inverse of the tensor-metric g11 is given by
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and defining (111=(11(11, the Christoffel symbols of the second kind are
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Therefore, the differential equations of the geodesics may be written as
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We get from equations (20) and (21) that


[image: image69.wmf]0

r

2

1

ds

d

θ

θ

1

2

3

ds

θ

d

θ

1

2

2

2

2

2

2

2

=

+

÷

÷

ø

ö

ç

ç

è

æ

-




         (22)
The latter equation may be resolved via the transformation 
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Yielding

 
[image: image71.wmf]C)

r

2

s

tanh(

r

1

u

+

-

=





          (24)
where C is an integration constant

From equations (19) and (24) we obtain
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Equation (25) have the particular solution 

(1=A1=const.





          (26) 
More general solution can be obtained through the transformation
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which reduces equation (25) to an independent set of linear differential equations of the form.
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The general solution of equation (28) is


[image: image75.wmf])

B

C

r

2

s

 tanh

r

(

C

r

2

s

cosh

z

1

2

1

+

÷

ø

ö

ç

è

æ

+

÷

ø

ö

ç

è

æ

+

=



            (29)
where the B
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 is constant of integration .
It follows, since
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that
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Equations (26) and (31) describe the geodesic lines, with the A
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 as integration constant.
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4. Conclusions
(A) From equation (32  ) it follows that the distance between two negative binomial distributions is not bounded. However, if we fix 
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(B) It is also possible to establish a relationship between (32  ) and Bhattacharyya’s distance (1946). This last distance can be obtained applying Rao’s (1945) method to binomial distribution .
      If we consider the binomial distribution’s parametric family, with known index N and parameters 
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 the Bhattacharyya’s distance, 
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Hence, if we fix 
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, both distances in ( 32 ) and (34 ), are decreasing functions of 
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 and, following Shepard (1962), we conclude that the preorders associated with ( 32 ) and ( 34 ) are equal.
( C) When 
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and thus
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It follows from (34 ) and (36) that
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      Thus, when 
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