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Abstract

In this paper, the economic dispatch algorithm is used to reduce the losses in the power system. The method of LaGrange was built to solve the problem of losses reduction case to reduce the total  generation cost.                                          
The some capacitors in the power system are installed them on the buses of the system to minimize the power losses and get the best total generation cost. 

To achieve that, the present work is developed to determine the optimal location and size of capacitors in transmission power system where, the Participation Factor Algorithm and the Steady State Genetic Algorithm are proposed to select the best locations for the capacitors (by the first algorithm PF) and determine the optimal size for them (by the second algorithm ssGA), taking into consideration the cost of power losses, cost of fuel, and cost of the capacitors. 

الخلاصـــة
تمّ في هذا البحث استخدام خوارزمية الإرسالية الاقتصادي (Economic operation)؛ وذلك لتقليل الخسائر في أي نظام قدرة كهربائية، إذ تمّ استخدام طريقة لاكرانج لحل مشاكل تقليل الطاقة المفقودة التي تساعد في النهاية على تقليل كلفة النظام.

وقد تمّ حقن عدة متسعات في النظام من خلال تنصيبها على مسارات الطاقة التي تؤدي إلى الحفاظ على الطاقة وعدم ضياعها. 
ولتحقيق ذلك فقد قام هذا البحث بتحديد أفضل مواقع وانسب عدد للمتسعات، إذ تمّ بناء خوارزمية معامل المشاركة (Participation Factor) والخوارزمية الجينية (Steady State Genetic Algorithm) ، استخدمت الخوارزمية الأولى لاختيار أفضل المواقع لحقن المتسعات  في حين استخدمت الخوارزمية الثانية  لتحديد حجم هذه المتسعات وعددها. آخذين بنظر الاعتبار كلفة القدرة المفقودة وكلفة الوقود وكلفة المتسعات.

1- Introduction

The Energy Management System or( EMS )as we know it today had its origin in the need for electric utility companies to operate their generators as economically as possible . To operate the system as economically as possible requires that the characteristics of all generating units be available so that the most efficient units could be dispatched properly along with the less efficient. In addition, there is a requirement that the on/off scheduling of generators units be done in an efficient manner as well . The scheduling of generators with limited fuel or water supplies is incorporated in energy management systems . This allows operators to further reduce the cost of operation by taking advantage of cheaper fuels or hydropower .

2- Inequality Constraints in Optimization

Practical optimization problems contain inequality as well as equality constraints. The optimization problem can be stated as:

·  Minimize the cost function 
  F(x1, x2… xn)               
                                              (1)

·  Subject to the equality constraints

gi(x1,x2,…xn)=0              i=1,2,…,m                                       (2) 

·  And the inequality constraints

       hj(x1,x2,…xn)≤0              j=1,2,…,p                              
          (3) 

The Lagrange multiplier is extended to include the inequality constraints by introducing the m-dimensional vector μ of undetermined quantities.

3-  Economic Dispatch Including Losses

The active power transmission losses may amount to 20 to 30% of the total load demand, ideally, the exact power flow equations should be used to obtain the active power transmission losses in the system, however, and the electric power system engineer may OPF for expressing the losses in terms of power generations only. 
One common practice for including the effect of transmission losses is to express the total transmission loss as a quadratic function of the generator power outputs in one of the following forms, (Daniel S. Kirschen,2004)
·   Simple form:
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 EMBED Equation.3  [image: image2.wmf]                                                           (4)      

·   Kron’s loss formula:
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Bij are called the loss coefficients, which are assumed to be constant for a base range of loads, and reasonable accuracy is expected when actual operating conditions are close to the base case conditions used to compute the coefficients. The economic dispatch problem is to minimize the overall generation cost, C, which is a function of plant output, constrained by: 

· The generation equals the total load demand plus transmission
    Losses,

· Each plant output is within the upper and lower generation limits inequality constraints.

Mathematically: 
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The resulting optimization equation becomes:
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The minimum of the unconstrained function is found when:
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When generator limits are not violated:  
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where 
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 EMBED Equation.3  [image: image19.wmf]is known as the penalty factor of plant i and is given  by:
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The effect of transmission losses introduces a penalty factor that depends on the location of the plant.

·  The minimum cost is obtained when the incremental cost of each plant multiplied by its penalty factor is the same for all plants.

The incremental transmission loss is obtained from Kron’s loss formula as,
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By setting the fuel cost equal to 1 $/MBTU, can be rewritten as:
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Substituting eq (20) and eq (21) in eq (17), yields :
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Rearranging the eq as:
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Extending eq (23) for all plants results in the following linear equations (in matrix form),
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              (24)
To find the optimal dispatch, 

·  The simultaneous linear equations in eq (24) are solved for an estimated value of , the solution will be pi(1), i=1,N .

· Then the iterative process is continued using the gradient method for the (N+1) system equations formed by eq (7) and eq (24)].( Saadat, H. 1999)     

Or in the short form

                                   E * P = D                                                          
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To find the optimal dispatch for in estimated value of λ
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 ,the simultaneous linear equation given by (25) is solved. In MATLAB use the command    P=E \ D.

    Then the iterative process is continued using the gradient method. To do this, from (23), Pi at the Kth iteration is expressed as:
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     Substituting for Pi from (26) in (7) results in 


[image: image31.wmf])

(

1

)

(

)

(

)

(

)

(

)

(

2

2

)

1

(

K

ng

i

K

i

j

K

K

K

PL

PD

Bii

ci

BijPi

bi

Boi

+

=

+

-

-

-

å

å

=

¹

l

l

l

                         (27)

Or 
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 EMBED Equation.3  [image: image33.wmf]
                                                    (28)

       Expanding the left –hand side of the above equation in the Taylor series about an operation point 
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Or    

[image: image36.wmf]å

D

=

D

=

D

)

(

)

(

)

(

)

(

)

(

)

(

)

)

(

(

K

K

K

K

K

d

dP

P

d

df

P

l

l

l

l

                        (30)                                       

where 
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And therefore,
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where
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The process is continued until 
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 is less then a specified accuracy, and a specified accuracy =0.0001. If an approximate loss formula expressed by 
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         is used, Bij=0, B00=0, and solution of the simultaneous equation given by (26) reduced to the following simple expression 
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In addition, (31) is reduced to 
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4- Outline of the Basic steady state Genetic Algorithm (Witwit,2006)
1. Start : Generate random population of n chromosomes (suitable solutions for the problem). 

2. Fitness : Evaluate the fitness f(x) of each chromosome x in the population 

3. New population : Create a new population by repeating following steps until the new population is complete: 

a. Selection : Select two parent chromosomes from a population according to their fitness (the better fitness, the bigger chance to be selected). 

b. Crossover : With a crossover probability cross over the parents to form a new offspring (children). If no crossover is performed, an offspring is an exact copy of parents. 

c. Mutation : With a mutation probability mutates a new offspring at each locus (position in chromosome). 

d. Accepting : Place a new offspring in a new population .

4. Replace: Use new generated population for a further run of algorithm 

5. Test : If the end condition is satisfied, stop, and return the best solution in current population. 

6. Loop : Go to step 2.
5- The Capacitor Placement
The capacitor placement problem comprises two terms; first term represents the cost of capacitor placement, which has two components:

1. Fixed installation cost.

2. Purchase cost.

The second term represents the total cost of energy loss. The energy loss is obtained by summing up the power losses for each load level multiplied by the duration of the load level. In practice, capacitors banks of standard discrete capacitance are ground. Hence, capacitor size is the discrete variables. The cost of capacitor placement at location                                                                                         k with sizing 
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where 
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 is the cost of one bank of capacitor or is a fixed capacitor to be installed.
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represents the cost associated with the capacitor installation at location k.]. For each load level, let the real power loss in the system be
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, then the general capacitor placement problem is formulated as follows:
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subject to:
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where 
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In this work we have developed the equation formulated of the general capacitor placement to find the annual cost by dividing the cost of capacitor by 10 by assuming that the capacitor lasts 10 years at least. These assumptions assist in minimizing the energy cost and the total cost of the system by the ability of an addition of the many of capacitors to the system.
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 is the sizing vector whose components are multiples of the standards size of one bank.
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is the control setting vector at load level i.( Mansour Y., 2005)
6- Computing of Eigenvalues and Eigenvectors 

The modal analysis mainly depends on the power-flow Jacobian matrix. An algorithm for the computing of participation factor as fig (3). 
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By letting 
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 = 0  in Equation (31):

   
[image: image63.wmf]|

|

0

12

11

V

J

J

P

D

+

D

=

=

D

q

,
[image: image64.wmf]|

|

12

1

11

V

J

J

D

-

=

D

-

q

                 (40)

And
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Substituting Equation (41) in Equation (42): yields
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where 
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 is the reduced Jacobian matrix of the system.

 Equation (34) can be written as:
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The matrix 
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represents the linearzed relationship between the incremental changes in bus voltage (
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V) and bus reactive power injection (
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Q). It’s well known that, the system voltage is affected by both real and reactive power variations. In order to focus the study of the reactive demand and supply problem of the system as well as minimize computational effort by reducing dimensions of the Jacobian matrix J the real power (
[image: image73.wmf]D

P = 0) and angle part from the system in Equation (39 ) are eliminated. The eigenvalues and eigenvectors of the reduced order Jacobian matrix 
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are used for the voltage stability characteristics analysis. Voltage instability can be detected by identifying modes of the eigenvalues matrix
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. The magnitude of the eigenvalues provides a relative measure of proximity to instability. The eigenvectors on the other hand present information related to the mechanism of loss of voltage stability. Eigenvalue analysis of 
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Equation (45) can be written as:


[image: image84.wmf]G

FL

=

-

-

1

1

R

J

                                                                (46)

where      
[image: image85.wmf]1

=

FG


Substituting Equation (46) in Equation (44) gives
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where
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where 
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Equation (50) can be summarized as follows:

1. If
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   Note that for all the small eigenvalues, bus participation factors determine the area close to voltage instability. Equation (51) implies that 
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 Figure (3)  Algorithm for the computing of Participation Factor

7- The Discussion of the Proposed System 

We will test case in the proposed system :

1- The case of 22 – bus bars with 10 generators (Iraq system).
It is aimed in this research to reduce the total generation cost of power system using optimum economic dispatch by placing some capacitors on the bus bars of power system to reduce the losses of power and this will lead to reduce the total cost.

To select the optimal locations and sizes of the capacitors, we will use the Participation Factor to get the best locations in the bus bars of power system. And we will use the Genetic Algorithm steady state to get the best sizes for these capacitors.


In this section we will present how we will get the best total cost and compare with the previous cost that will get it before the adding of capacitors. So we will present the procedures that will fellow them to get the cost of system:

1- Compute the Newton Raphson method.

2- Compute the losses of power system.

3- Determine the economic dispatch before compensation using Lagrange multiplier method.

4- Compute the Participation Factor to detect the optimal locations in the power system.

5- Apply the Genetic Algorithm to select the best sizes for the capacitors that will place in the selected locations (in the previous procedure).

6- Compute the optimum economic dispatch to get the total cost, and compare with the previous cost.
8-  Iraq System / 10 – Generators:

A 10- generator case (the system of Iraq) with 22 bus bars is taken to illustrate the proposed algorithm to solve the economic dispatch problem.

As in the previous section the same procedures will be computed to get the reduced total cost.

Figure (1) presents the schematic of 22 bus transmission system.

The Newton - Raphson, B– coefficients and the losses of the system, and the total cost for the power system before placing the capacitors are presented in Tables (1), (2) below:
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Figure (1) The Schematic of Iraq System (22 Bus Bars)

Power Flow Solution by Newton-Raphson Method
Maximum Power Mismatch = 6.38099e-007
No. of Iterations = 10
Table (1) Power Flow Solution By Newton-Raphson before placing the capacitors

	Bus
	Voltage
	Angle
	Load
	Load
	Generation
	Generation
	Injected

	No.
	Mag
	Degree
	MW
	Mvar
	MW
	Mvar
	Mvar

	1
	1.020
	  0.000
	0.000
	0.000
	-1121.349
	223.221
	0.000

	2
	1.018
	1.520
	394.000
	16.000
	0.000
	0.000
	0.000

	3
	1.020
	6.417
	98.000
	2.000
	1320.000
	88.710
	0.000

	4
	1.070
	11.837
	0.000
	0.000
	318.000
	86.934
	0.000

	5
	1.058
	13.511
	79.000
	25.000
	260.000
	89.215
	0.000

	6
	1.022
	11.161
	299.000
	68.000
	0.000
	0.000
	0.000

	7
	1.040
	11.631
	75.000
	2.000
	660.000
	-53.439
	0.000

	8
	1.025
	8.112
	67.000
	3.000
	0.000
	0.000
	0.000

	9
	0.971
	12.379
	282.000
	75.000
	0.000
	0.000
	0.000

	10
	0.977
	13.271
	149.000
	5.000
	0.000
	0.000
	0.000

	11
	0.974
	11.998
	245.000
	34.000
	0.000
	0.000
	0.000

	12
	0.990
	16.783
	0.000
	0.000
	492.000
	52.635
	0.000

	13
	0.993
	12.011
	65.000
	54.000
	0.000
	0.000
	0.000

	14
	1.000
	15.155
	170.000
	10.000
	1200.000
	155.428
	0.000

	15
	0.988
	20.938
	124.000
	63.000
	0.000
	0.000
	0.000

	16
	0.984
	13.932
	217.000
	74.000
	0.000
	0.000
	0.000

	17 
	1.001
	13.676
	159.000
	47.000
	0.000
	0.000
	0.000

	18
	1.000
	22.387
	165.000
	94.000
	840.000
	186.857
	0.000

	19
	0.964
	22.271
	40.000
	58.000
	0.000
	0.000
	0.000

	20
	1.020
	23.581
	185.000
	10.000
	250.000
	60.922
	0.000

	21
	1.040
	25.479
	89.000
	15.000
	400.000
	135.965
	0.000

	22
	0.967
	12.248
	38.000
	30.000
	0.000
	0.000
	0.000

	Total
	2940.000
	685.000
	4618.651
	1026.448
	0.000


Table (2) The B-coefficients , The Power losses , and The total generation cost

	B=
	0.0048
	0.0030
	0.0027
	0.0016
	0.0002
	-0.0001
	-0.0011
	-0.0013
	-0.0018
	-0.0020

	
	0.0030
	0.0032
	0.0030
	0.0019
	0.0003
	0.0001
	-0.0010
	-0.0011
	-0.0017
	-0.0019

	
	0.0027
	0.0030
	0.0030
	0.0033
	0.0003
	-0.0001
	-0.0010
	-0.0011
	-0.0017
	-0.0019

	
	0.0016
	0.0019
	0.0019
	0.0096
	-0.0000
	-0.0002
	-0.0011
	-0.0012
	-0.0018
	-0.0020

	
	0.0002
	0.0003
	0.0003
	-0.0000
	0.0014
	0.0007
	-0.0003
	-0.0004
	-0.0010
	-0.0012

	
	-0.0001
	0.0001
	0.0001
	-0.0002
	0.0007
	0.0075
	-0.0004
	-0.0006
	-0.0012
	-0.0014

	
	-0.0011
	-0.0010
	-0.0010
	-0.0011
	-0.0003
	-0.0004
	0.0024
	-0.0005
	-0.0001
	-0.0003

	
	-0.0013
	-0.0011
	-0.0011
	-0.0012
	-0.0004
	-0.0006
	0.0005
	0.0019
	0.0012
	0.0010

	
	-0.0018
	-0.0017
	-0.0017
	-0.0018
	-0.0010
	-0.0012
	-0.0001
	0.0012
	0.0071
	0.0066

	
	-0.0020
	-0.0019
	-0.0019
	-0.0020
	-0.0012
	-0.0014
	-0.0003
	0.0010
	0.0066
	0.0130


	B0=

1 .0e-003*
	0.0083
	-0.0380
	0.0842
	0.1427
	-0.0844
	0.0149
	-0.0423
	-0.0201
	-0.0829
	-0.1093


B00 =    0.0087

Total system loss = 58.7616 MW 
Total generation cost =   66290.72 $/h

To reduce the total cost , the method of Participation factor is performed by computing the Jacobian Matrix reduction JR to analyze the stability of the voltage. This can be made by computing the eigenvalues and eigenvectors for JR matrix, where the values of eigenvalues give a proximate for the voltage instability at the load level ,and from this we can determine the  Participation Factor for the buses of the system , and the buses that have the minimum eigenvalues are selected and large PF(participation factor) values are used to inject the capacitors in the buses.

Figure (2) below presents the load level participation factor. And Tables (3), (4) below present the results of eigenvalues for the selected buses and the Participation factor for these buses:
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Figure (2) The Load Level Participation Factor for the Eigenvalues
Table (3) The Eigenvalues of The Selected Buses

	Location
	Eigenvalue

	2
	247.071

	6
	288.752

	8
	224.783

	9
	105.238

	10
	87.196

	11
	77.561

	13
	51.724

	15
	23.209

	16
	17.698

	17
	5.614

	19
	4.597

	22
	4.642


Table (4) The Participation Factor for The Selected Buses

	Bus No.
	Participation Factor

	2
	0.0025

	6
	0.1344

	8
	0.0025

	9
	0.1344

	10
	0.0836

	11
	0.0374

	13
	0.0836

	15
	0.1514

	16
	0.1623

	17
	0.1500

	19
	0.0374

	22
	0.3115


From the results of the participation factor, the 10 candidate locations in the system are selected for placing the capacitors. ( see table (5)).

After the best candidate buses are obtained, the next step is to get the optimal sizes for the capacitors to place them in these buses, this is done by using the Steady State Genetic Algorithm (ssGA). And to achieve this target, we need to building an initial population and getting the fitness function and determined the number of generations. At initial, random population are selected and the encoding of the chromosomes of the population use integer values ( because each chromosome will present the number of capacitors that will be injected to system). Each of chromosome is added to the buses data array to the field of Qsht  (which present the field of capacitors) and compute the power losses for the system.

The value of power losses will be multiplied by the cost of energy and  will be added to the price of capacitors and their maintenance to give the fitness function. So, to get the minimum total cost we must get the best chromosome that has the minimum fitness function.

FitFun=  the cost of capacitor+ the power losses*energy cost +

       the maintenance(fixed installment cost)

      Energy cost (Ke) = 60$/ MW.h.

      The cost of capacitor 

a- Fixed installment cost = 1000$.

b- Purchase = 3500$/bank.

Table (5) presents the location of candidate capacitors and their optimal sizes which are obtained from the ssGA, and Tables (6), (7), and (8) below present the final results to get the reduced total generation costs:

Table (5) The Fixed Capacitors Placement & Their Sizes

	Optimal locations
	Optimal Size of Capacitors

	(bus No.)
	(MVAR)

	6
	6

	9
	7

	10
	15

	11
	2

	13
	9

	15
	5

	16
	13

	17
	6

	19
	11

	22
	1


Absolute value of the slack bus real power mismatch, dpslack =   0.0023 pu
Power Flow Solution by Newton-Raphson Method Maximum Power 

Mismatch =7.87172e-007

No. of Iterations = 10
	Bus
	Voltage
	Angle
	Load
	Load
	Generation
	Generation
	Injected

	No.
	Mag
	Degree
	MW
	Mvar
	MW
	Mvar
	Mvar

	1
	1.020
	0.000
	0.000
	0.000
	187.047
	3.596
	0.000

	2
	1.019
	-0.246
	394.000
	16.000
	0.000
	0.000
	0.000

	3
	1.020
	0.414
	98.000
	2.000
	348.000
	-49.847
	0.000

	4
	1.070
	5.497
	0.000
	0.000
	400.000
	64.665
	0.000

	5
	1.058
	5.516
	79.000
	25.000
	300.000
	84.714
	0.000

	6
	1.022
	-1.270
	299.000
	68.000
	0.000
	0.000
	11.000

	7
	1.040
	-0.733
	75.000
	2.000
	449.000
	-67.958
	0.000

	8
	1.025
	-4.252
	67.000
	3.000
	0.000
	0.000
	0.000

	9
	0.976
	-1.516
	282.000
	75.000
	0.000
	0.000
	7.000

	10
	0.984 
	-2.556
	149.000
	5.000
	0.000
	0.000
	15.000

	11
	0.979
	-2.542
	245.000
	34.000
	0.000
	0.000
	2.000

	12
	0.990
	1.649
	0.000
	0.000
	355.000
	40.907
	0.000

	13
	0.996
	-0.004
	65.000
	54.000
	0.000
	0.000
	9.000

	14
	1.000
	-3.541
	170.000
	10.000
	125.000
	117.085
	0.000

	15
	1.009
	0.348
	124.000
	63.000
	0.000
	0.000
	5.000

	16
	0.991
	-2.797
	217.000
	74.000
	0.000
	0.000
	13.000

	17 
	1.006
	-3.651
	159.000
	47.000
	0.000
	0.000
	6.000

	18
	1.020
	1.119
	165.000
	94.000
	368.827
	212.467
	0.000

	19
	0.994
	1.018
	40.000
	58.000
	0.000
	0.000
	11.000

	20
	1.040
	2.247
	185.000
	10.000
	300.000
	50.125
	0.000

	21
	1.060
	3.637
	89.000
	15.000
	339.000
	144.516
	0.000

	22
	0.974
	-2.829
	38.000
	30.000
	0.000
	0.000
	1.000

	Total
	2940.000
	685.000
	3173.154
	600.269
	80.000


Table (6) Power Flow Solution By Newton-Raphson after placing
Table (7) The B-coefficients , The Power losses , and The total generation cost

	B=

1.0e-004* 
	0.2280
	0.1529
	0.1334
	0.0756
	0.0080
	-0.0078
	-0.0569
	-0.0640
	-0.0888
	-0.0997

	
	0.1529
	0.1429
	0.1504
	0.0940
	0.0185
	0.0032
	-0.0639
	-0.0650
	-0.0821
	-0.1011

	
	0.1334
	0.1504
	0.2293
	0.1480
	0.0156
	-0.056
	-0.467
	-0.0550
	-0.0821
	-0.0915

	
	0.0756
	0.0940
	0.1480
	0.4286
	-0.0027
	-0.0140
	-0.0393
	-0.0512
	-0.0828
	-0.0888

	
	0.0080
	0.0185
	0.0156
	-0.0027
	0.0672
	0.0356
	-0.0170
	-0.0243
	-0.0518
	-0.0639

	
	-0.0078
	0.0032
	-0.0056
	-0.0140
	0.0356
	0.3700
	-0.0189
	-0.0276
	-0.0575
	-0.0657

	
	-0.0569
	-0.0639
	-0.0467
	-0.0393
	-0.0170
	-0.0189
	-0.0042
	0.0166
	-0.0026
	-0.0060

	
	-0.0640
	-0.0656
	-0.0550
	0.0512
	-0.0243
	-0.0276
	0.0166
	0.0669
	0.0530
	0.0389

	
	-0.0888
	-0.0821
	-0.0821
	-0.0828
	-0.0518
	0.0575
	-0.0026
	0.0630
	0.3175
	0.2857

	
	-0.0997
	-0.1011
	-0.0915
	-0.0888
	-0.0639
	-0.0657
	-0.0060
	0.0389
	0.2857
	0.5132

	
	0.2280
	0.1529
	0.1334
	0.0756
	0.0080
	-0.0078
	-0.0569
	-0.0640
	-0.0888
	-0.0997


	B0= 
	-0.0389
	-0.0655
	-0.1010
	-0.1187
	0.0078
	0.0088
	0.0847
	0.0468
	0.0261
	0.0871


B00 =    -1.7434

Total system loss = 16.4216 MW 

Total generation cost =   35874.18 $/h

Incremental cost of delivered power (system lambda) = 16.024488  $/MWh 
Table (8) The Total Losses , The Total Cost, The Lambda of The System, and The Optimal Dispatch of Generation

	Optimal Dispatch of 

Generation

	187.5000

	139.0000

	400.0000

	279.1755

	345.2646

	268.2019

	125.4000

	279.0975

	300.0000

	268.1165


 9- Conclusions

    The following conclusions are derived from this work:

·  
The power flow method, together with the system losses and the economic dispatch methods can be used to obtain the optimal dispatch of generation.

To get this target will need reducing the losses of system by reducing the loss coefficients. The dispatch method produces a variable named dpslack. This is the difference (absolute value) between the scheduled slack generation determined from the coordination equation, and the slack generation, obtained from the power flow solution. A power flow solution obtained with new scheduling of generation results in a new loss coefficient, which can be used to solve the coordination equation again. The process continues until dpslack is within a specified tolerance, but it is seen that the dpslack value must not be very small because this will increase the iterative and this will lead to increase the cost (it is found that the best value for dpslack is at 0.1).

· The Participation Factor and Steady State Genetic algorithm are used to determine the candidate buses and the number of reactive power gives the accuracy and the enhancement to the work because the first stage (participation factor stage) simultaneously contributes to narrowing down the search domain for the second stage (GA optimization), as well as ensures those buses that are sensitive to voltage problems considered for reactive power compensation.

· The use of ssGA gives more accurate results than the simple genetic algorithm SGA because the SGA replaces the entire parent population with the children. And in elitism the fittest individuals pass unchanged from the parent population to the children while the ssGA replaces few individuals, and it provide a set of solutions rather than only one solution.

    Finally, from the computational results, the following can be observed

1. The total generation cost for the initial operation condition is reduced by using the total generation cost with optimal dispatch of generation and genetic algorithms.

2.   Mvar of generators is reduced by using injection capacitors.

3.  The solution methodology is based on an optimization technique chosen by genetic algorithms to minimize the objective function while the load constraints and operational constraints like the voltage profile at different load levels are satisfied.

4.   ssGA, which is based on the laws of natural selection and survival of the fittest, has been used successfully to reduce power loss considering balanced condition, because ssGA reaches quickly the region of optimal solutions and its accuracy for one reason: ssGA avoids local minima by searching in several regions. 
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Obtain the load flow solution for a base case of the      system and get the Jacobian matrix (J)
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