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Abstract

In this paper , we  introduce the definition of  f* - coercive  function and introduce  several properties of  f* - coercive  function .

الخلاصة
في هذا البحث، قدمنا تعريف لـ f* - coercive function  وقدمنا بعض مبرهنات لـ
 f* - coercive function
Introduction 
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 be a topological space. A subset A of a space X is called semi- open if  and A is called feebly open ( f- open) if there exists an open set U of X such that 
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 where  
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 stands for the intersection of all semi-closed subsets of X which contain U ,(Navalagi, 1991).
In this paper gives a new definition namely  of  f* - coercive  function . 

1-Basic concepts
Definition 1.1,(Levine, 1963).


A set B in a space X is called semi – open (s.o) if there exists an open subset O of X such that   
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The complement of a semi – open set is defined to be semi – closed (s.c.)

Definition 1.2,(Dorsett, 1981).

Let X be a space and  
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 . Then the intersection of all semi – closed subsets of X which contains  A  is called semi – closure of  A  and it is denoted by 
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Definition 1.3,(Dontchev, 1998).

A subset B of a space X is called pre – open if  
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   . The complement of a pre –open set is defined to be pre – closed .

Definition 1.4,(Navalagi, 1991).
A subset B of a space X is called feebly open (f-open) set if there exists open subset U of X such that 
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The complement of a feebly open set is defined to be a feebly closed 
(f-closed)set .

Proposition 1.5(Farero, 1987).

Let X be a space and 
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 . Then the following statements are equivalent :

( i ) B is f – open set .

( ii ) There exists an open set O in X such that 
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( iii ) B is semi – open and pre – open .

Definition 1.6(Maheshwari, 1985)
A space X is called f-compact if every f-open cover of X has a finite subcover.

Lemma 1.7(Khudayir, 2008)
Let X  be space and F be an f-closed subset of X, then  
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f- compact subset of  F, for every f-compact set  K in X .

Definition 1.8, (Khudayir, 2008)
Let X  and Y  be spaces, the function  
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 is called st-f-compact   if the inverse image of each f-compact set in Y is  f- compact set in X. 

Definition 1.9 (Khudayir, 2008) 
     Let X and Y be spaces .A function  
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  is called f - coercive if for   every  f  - compact   set 
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  , there exists f- compact set  
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Definition 1.10,(Maheshwari and Thakur, 1980; Reilly and Vammanamurthy, 1985; Navalagi, 1998)
Let X and Y be spaces and  
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  be a function, Then f is called 
 f-continuous function  if  
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 is an f- open set in X  for every open set A in Y .

Definition 1.11,( Reilly and Vammanamurthy, 1985; Navalagi, 1998)
A function 
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 is called st-f-closed function if the image of each f- closed subset of X is an f-closed set in Y .

Definition 1.12,(Khudayir, 2008)
Let X and Y be spaces .Then  
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  is called a strong feebly  proper (st-f-proper) function if :

 (i) f is f-continuous function.

(ii) 
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 is a st-f-closed function , for every space Z.

Proposition 1.13, (Khudayir, 2008)
Let  
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  be a function on a space X. If f is  st-f-proper, then X is an f-compact space, where w is any point which dose not belong to X .

2- The main results 

Definition (2.1) :


Let X and Y be spaces .A function 
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 is called 
f* - coercive   if for every f – compact set 
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  , there exists  compact set  
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Example (2.2): 

     If X is compact space, then the function 
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 is f* - coercive   .

Remark 2.3 :

   Every f - coercive    function  is f* - coercive    function .
. 
Proposition (2.4): 


Let  
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  be st-f-proper  function ,then 
[image: image31.wmf]}

w

{

p

X

:

f

=

®

 is   f* - coercive    function  ;  where w is any point which dose not belong to X .

Proof :


   By proposition (1.13) and Example(2.2) .

Proposition (2.5):


For any f- closed subset F of a space X , the inclusion function  
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  is  f* - coercive    function   .

Proof:
  Let J  be an f-compact subset of X, then by lemma (1.7), 
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 is f-compact set in F , then  
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Therefore the inclusion function  
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  is  f* - coercive    function   .

Proposition (2.6):


If 
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 is  st-f-compact function, then 
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 is 
 f* - coercive  function .

Proof:

Let J be an f-compact set in Y , since 
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 is st-f-compact function, then 
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 is  f- compact set in X , thus
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Thus
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Therefore 
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 is  f* - coercive    function .

Proposition (2.7):

     Let X , Y and Z be spaces. If
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 is f*-coercive and 
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is  f-coercive function,then gof  is   a f*-coercive  function
. 
Proof:

Let J  be an f-compact set in Z ,then there exists f-compact set K in Y such that:
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Since 
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 is  f* - coercive  function, then there exists a compact set D in X such  that  
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Then
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Therefore 
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 is  f* - coercive    function .

Proposition (2.8):


Let 
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 be a f* - coercive  function such that F is f- closed subset of X. Then 
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  is a f* - coercive  function .  
Proof:

Since  F is f- closed set in Y , then by proposition(2.5), the inclusion function  
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 is f* - coercive  function, since  
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 is
 f* - coercive  function,  then by proposition (2.7).
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 is 
f* - coercive  function. 
But 
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  is f* - coercive  function. 
Proposition (2.9):


Let X and Y be spaces, such that Y is 
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is continuous , one – one , function .Then the following statements are equivalent :

(i) f  is an  f*-coercive  function .
(ii)f is an f- compact function .
(iii)f is an f- proper function .
Proof:

(i → ii)   Let J be an f-compact set in Y. To prove 
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 is a net in K , Since K is   a compact set in X , then by [Reilly and Vammanamurthy, 1985,theorem 3.15],the net 
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 has a cluster point x in X .Thus by [Reilly and Vammanamurthy, 1985,theorem 3.15], 
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   Therefore 
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 is an f-compact function .

(ii → iii ) By [AL-Badairy, 2005 , proposition 3.1.22]

( iii → i ) let J be an f-compact set in Y , since f is f- proper function , then by       [AL-Badairy, 2005 ,proposition 3.1.21], f is f- compact function, then 
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Hence  
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 is f*- coercive function .
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