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Abstract 

       The main objective of this work , is to present some aspects for construction Liapunov function for testing stability of linear and with constant coefficients .

New approaches and modification of finding Liapunov function based on new theories with illustrative problem are presented .  

Keywords. Large  scale systems; overlapping decomposition; Liapunov’s matrix function; stability; asymptotic stability
الخلاصة
        الهدف الرئيسي لهذا البحث هو عرض بعض الطرق لإنشاء دوال ليبانوف لاختبار استقرارية الأنظمة الخطية  ذات المعاملات الثابتة .كما اختص هذا البحث  بتطوير بعض الطرق لإنشاء دوال ليبانوف والتي اعتمدت على أسس نظرية جديدة مع بعض المسائل التوضيحية .

1- Introduction  
       The study of equilibria plays a center role in ordinary differential equations and their applications .An equilibrium point , however ,must satisfy a certain stability criterion in order to be every significant physically . [S. Leela,  Large-scale systems ] 

Liapunov stability , is concern with every stringent restrictions on the motion .It is required that motions (solutions to be once near together keep all future time as function of the time .specifically .We say that a solution 
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 of the problem under investigation may be 
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Such that any solution 
[image: image5.wmf]y

&

is satisfying 
[image: image6.wmf]d

£

-

y

x

&

&

 for t=0 and satisfies 
[image: image7.wmf]0

³

£

-

t

all

for

y

x

e

&

&

   

A second method of liapunov treats the stability problem directly in a normal way ,but some what depend on a non constructive procedure . applications of the second method is not limited by an artificial circumstance compared with the first method . furthermore the second method relating to the construction or discovery of suitable testing function . In this paper we discuss some approaches for construction Liapunov function for the both linear and non-linear systems of differential equations   For linear systems of differential equations , we present three methods that constant a Liapunov function for a linear system with constant coefficients depend on Hurwitz and Sylvester theories .For non linear system of differential equations , we present three approaches based on first , second liapunov methods ,and the indeterminate coefficients . [M.  Ikeda,  D.D. ] A new theories with their proofs are build for our approaches an illustrative problems are given for each approach
Liapunov  functions
Liapunov  functions V (x) can be used to estimated basins of attraction of fixed points, show that a system has no periodic orbits or show a system has a globally attracting fixed point.

Definition  If U be an open subset of 
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note that (i-iii) can simultaneously be turn only if the system (1) has a unique fixed point 
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When V satisfies property iii),the function V is said to be (strictly)positive definite  on U  .  if this condition is weakened to 
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Then V is said to be Liapunov function

2- Methods for Constructing Liapunov Functions 

Stability  and Liapunov functions in this section we discuss the stability  of the equilibrium  points of the linear  system
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The stability of any hyperbolic equilibrium point 
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of ( 1 ) is determined  by the signs of the real parts of the eigenvalues
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  of the matrix Df (
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).  A hyperbolic equilibrium point
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  is asymptotically  stable if 
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  is a sink. And a hyperbolic equilibrium point
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  is unstable  if it is either  a source or a saddle.  The stability  of no hyperbolic equilibrium  points is typically more difficult to determine.   A method,  due to Liapunov, that  is very useful for deciding the  stability  of non hyperbolic equilibrium points is presented  in this section. [ Yoshizawa ]
Example.  consider the system 
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The only critical point is (0, 0) and it
 is
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  a stable  node. The flow is given by

 For all  
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and hence (0, 0) is stable. 
[image: image34.wmf])

0

(

)

(

e

N

c

V

Î

 Moreover  

[image: image35.wmf]0

)

(

=

¥

®

c

V

Lim

t

   
… ( 3 )
So we  that  (0, 0) is asymptotically  stable.

Remark  .

1. It  can be seen from the  phase portraits in that  a stable  node or focus of a linear system in
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  is  an asymptotically  stable  equilibrium  point;  an unstable  node or focus or a saddle of a linear system in
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  is an unstable  equilibrium point; and a center of a linear system in
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   is a stable  equilibrium point which is not asymptotically  stable.

2. It follows from the Stable  Manifold Theorem  and the Hartman-Grobman Theorem  that  any sink of (1) is  asymptotically  stable  and  any source or saddle of (2) is unstable.   Hence, any hyperbolic equilibrium point of (3) is either  asymptotically  stable  or unstable.

Theorem . [A.M.  Liapunov ]  If 
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  is a stable equilibrium point of (1),  then no eigenvalue of Df (
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x

) has positive real part. We see that  stable  equilibrium  points  which are  not  asymptotically  stable  can  only occur at non hyperbolic equilibrium points.  But the question as to whether a nonhyperbolic equilibrium point is stable,  asymptotically stable  or  unstable  is a delicate  question.   The  following method,  due to Liapunov (in his 1892 doctoral  thesis),  is very useful in answering this question.

Theorem  . [A.M.  Liapunov ]  ( Liapunov’s direct method )

Let E be an open subset of
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  is stable;

(b) if 
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(c) if 
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Remark .

1. If 
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2. A function V   :
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 → R satisfying the  hypotheses  of the  above theorem  is called a Liapunov function.

3. Liapunov direct  method  is indeed  direct  in the  sense that  it  does not  require  any previous knowledge about the solutions of the system or the type of its critical point
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.  Instead,  if one can construct  a Liapunov function for the system then one can directly determine the stability of the  critical  point  
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.   However,  there  is no  general  method  for constructing  a Liapunov function.

Example.  Consider the system
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The origin is an equilibrium  point for this system 
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Thus Df(0) has eigen values 
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Thus x = 0 is a sink and hence an asymptotically  stable hyperbolic equilibrium point.
Let us show that  
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is a Liapunov function for this system.

We have 
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for this system.

Next let us show that  
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Example.  consider the system 
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The origin is the only eigenvalues 
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The function 
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Which encircle the origin . the origin is thus a stable equilibrium point of this system which is not asymptotically stable . 

Example.  Consider the system
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The origin is an  equilibrium  point  for this  system  and   
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 thus Df(0) has eigenvalues  
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 is a nonhyperbolic equilibrium point . so we use liapunov 's method .the function 
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Hens if 
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Furthermore, choosing 
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Example . Consider the system
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The origin is an equilibrium point for this system and 
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Thus Df(0) has eigenvalues 
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 is a nonhyperbolic equilibrium point.  So we use Liapunov’s method.     The function 
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For 
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3- Linear system
     This approach depends on the analysis of Liapunov’s  method as discussed in this paper It can be presented as follows  :
Step 1- apply Liapunov’s criterion to find the principle diagonal minors 
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Where the coefficients 
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Step 2- we use following formula 
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Step 3- from (1), one can solve (n-1) equations iteratively to get the values of (k , j=1,2,…..,n)
Step 4- construct the liapunov function in quadratic from with constant coefficients as follows 
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In order to check our new approach Varity of problems to demonstrate the stability of the systems 
Example 6:  Consider the liner system 
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Which could be rewritten in matrix form 
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The characteristic equation is given by 
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Where 
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Hence by applying Hurwitz's criterion ,we can find the principle diagonal minors 
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Therefore using the formula 
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Since  the Liapunov function is given by      
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 And so 
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And it is clear that V is positive definite for  all R ,hence the system is asymptotically stable 

Example . Consider the characteristic equation 
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  We have 
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We use the formula   
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 Also we assume 
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 As in previous example ,the Liapunov function is 
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Hence 
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Therefore V(x) is negative definite for all R,P and Q ,and hence the system corresponding the characteristic the characteristic is unstable ,      
Example.  Consider the following system 
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Where a ,b, c ,and e are any real numbers .then the system  is asymptotically stable if 
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Solution
      First we hope to determine the conditions that the parameters of the system (30) ,which are a,b,c, and e need to be satisfied in order to get the unperturbed solution 
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     to be asymptotically stable in accordance with equation (30) ,we consider a Liapunov function of the form 
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Where 
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Provided that these inequalities are satisfied , now  we use Hurwitz's criterion to determine the parameters of the system a ,b, c, and e, from the system (32)  we have the constant matrix 
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The characteristic polynomial is given by 
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Now ,using the condition of Hurwitz's criterion , we get
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  from Sylvester's criterion then –(a+e)>0 ,(a+e)<0 , a<-e  

                     
[image: image153.wmf]),

)(

(

)

(

1

0

)

(

2

bc

ae

e

a

bc

ae

e

a

-

+

-

=

-

+

-

=

D

           … ( 35 )  

Since 
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Then –(a+e)(ae-bc)>0 since –(a+e)>0

If parameters  a,b, c, and e of system (35) satisfy the condition a<-e and ae>bc then the function v given in equation (34)is positive definite , and so that the system is asymptotically stable .
Example.   Recalling the system of ordinary differential equation given in Example  
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We have a=-2 ,b=2 ,c=1 ,and e=-3

Since a<-e      -2<-(-3) then -2<3 (the first condition )

since  ae> bc (-2)(-3)>(2)(1) then 6>2 (the second condition ) then the system is asymptotically stable . 
Example .   Consider the liner system 
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We have a=2  , b=2 , c=5  , and e=-3 

Since  a<-e  ,(2)<-(-3) then 2<3 (the first condition )

Since ae>bc   ,(2)(-3)>(2)(5) then -6>10(false)  ,

Then the system is unstable 

         This system is very useful when studying the stability of perturbed liner system .consider the differential system 
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    When x is an n-vector and A is a real nxn constant nonsingular matrix .let the characteristic roots of A be distinct we shall denote to te real characteristic root of A       
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Now in order find a nonsingular constant matrix T "eigenfunction" such that 
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 To this objective  , consider the transformation  
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Now ( 41  )reduce to the form :
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Select a liapunov function 
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where (44)is the usual inner product and B a rael n x n constant matrix then 
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Where 
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Where 
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Where I is the identity matrix ,holds .After some computation , the matrix equation (47) yields 
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Assume that the matrix A is stable all 
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now ,we consider the following illustrative problem 

4- Conclusions
Considering the work done in this paper , we could recommended ,that the theorems built in this work can be extended for constructing general approaches applicable to varieties structure problems 
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