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Numerical Analysis of Non-Prismatic Beam on Elastic Foundation under  Generalized Loadings
Najla'a H. AL-Shareef

Civil Eng./Babylon University  
Abstract:

The main aim of this paper is to investigate the linear elastic behavior of non-prismatic beam on Winkler foundation. The finite differences  method was used to solve the governing differential equations for different configurations of non-prismatic cross-section and loading cases with different end supports. The results from these different cases are plotted together and check the accuracy of the solutions, which referred to the good efficiency of this analysis. The results indicated that present non-prismatic beam decreasing in deflection  for longitudinal  direction (width of beam b) and transverse direction (depth of beam h) about (80.67-81.81%)and(75.99-81.81% ) , respectively for different cases of loading. The results  indicated that  the value of Bending Moment is increasing for different cases of loading for non-prismatic beam compared with  prismatic beam about (68.53-96.5%), while decreasing in Shear force due to point load at mid span about (51.64%).
Key words:  Non-prismatic beam, Foundation, Winkler, Finite difference, Loading.

الخلاصة:
إن الهدف الرئيسي لهذا البحث هو دراسة التصرف المرن للعتبات قليلة العمق وذات المقاطع الغير متماثلة والمستندة على الأساس المرن لـ(Winkler). في حل المعادلات الحاكمة استخدمت طريقة الفرو قات المحددة. تم اشتقاق صيغ موسعة بالفرو قات المحددة لمعالجة حالات مختلفة من الأعتاب الغير متماثلة المقطع وكذلك حالات مختلفة للأحمال العرضية. تم رسم النتائج لحالات مختلفة لغرض المقارنة ومعرفة دقة الحلول وقد أشارت النتائج إلى كفاءة الطريقة المستخدمة . من أهم النتائج التي توصل إليها البحث هو التأثير السلبي المتفاقم لتغيير المقطع في منطقة عزم الانحناء الأكبر. حيث يصل الاختلاف إلى (80.67-81.81%) و (75.99-81.81% ) في الهطول في حالة التغيير بعرض المقطع و بعمق المقطع على التوالي.  وتشير النتائج أيضا إلى زيادة في العزوم بنسبة تتراوح من (68.53%)إلى96.5%)) لحالات مختلفة من التحميل بينما أشارت النتائج إلى نقصان بقوى القص بنسبة (51.64%) في حالة التحميل بمنتصف العتب.
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1.Introduction

Non prismatic beams have been used in various structure including buildings and bridges since the ﬁrst decades of the previous century, with an increasing application as the structural engineering techniques were improving. (Khan and Al-Gahthi 1995), presented an exact  solution of continuous 
solutions for non-prismatic beams of linear and parabolic profiles are derived and exact relations are obtained in terms of the variables over the nodes( beam supports) .  Much research has examined different methods to retrieve the stiffness   matrix for the non prismatic beam element. These methods involve direct integration of the governing differential equations . (Just, 1977; Karabalis and Beskos, 1983; Biondi and Caddemi, 2007), modifyed stiffness methods to consider tapering (Portland Cement Association (PCA), 1958; El-Mezaini et al., 1991; Balkaya, 2001), established the ﬂexibility matrix and inversing it (Eisenberger, ; Vu-Quoc and Léger, 1992; Frieman and Kosmatka, 1992; Frieman and Kosmatka, 1993; Tena-Colunga, 1996), and apply transfer matrices (Luo et al., 2007; Luo et al., 2006). All these methods may suffer the following deﬁciencies: 1. Some of these methods will recover the stiffness matrix for some special simple cases of tapering such as linear or parabolic depth variation along rectangular or I-shaped beams; while for other cases, they will be frustrated due to complex representation of shape functions and stiffness matrices (Karabalis and Beskos, 1983; Brown, 1984; Banerjee andWilliams, 1986). 2. Some of these methods, such as establishing the ﬂexibility matrix and inversing it, will only retrieve the stiffness matrix, and are unable to recover the shape functions, which might be necessary for the analysis procedure based on stiffness formulation (Eisenberger, 1985; Tena-Colunga, 1996).  (Ali 2010) dealt with the linear elastic behavior of thin beam with openings on Winkler foundation, with both normal and tangential frictional resistances. The finite difference method was used to solve the governing differential equations for different configurations of openings and loading cases including both transverse loads and external moments
This paper is an attempt to analysis non-prismatic beams with different configurations of cross-section  on Winkler type foundation by the method of finite differences. 

2.Formulation

Due to the complexity of this problem, assumptions are made to obtain easier and acceptable solutions. The classical theory of beams bending [Euler-Bernoulli theory]is based on certain simplifying assumptions :  

1. The plane transverse sections will remain plane after bending (no warping).
2. The normal lines to the middle plane will remain normal to the deflected middle plane (no shear deflection).

3. Normal strain (Єz)in the normal direction is zero.

4. The compression restraint is assumed to  be proportional to the transverse displacement while the frictional restraint is considered to be proportional with horizontal displacement (Winkler model).

According to the small deflection theory and linear stress-strain relationships, the governing equations for thin beam on elastic foundation shown below [Hetney]:
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(1-b)

Where: 

w = w(x) is the deflection (m)

u = u(x) is the horizontal displacement of the neutral axis (m)

Kz= modulus of sub grade reaction in z-direction  to be multiplied by the width of the beam (b) ,(kN/m2).

Kx= modulus of sub grade reaction in x-direction  to be multiplied by the width of the beam (b) ,(kN/m2).

E = modulus of elasticity of the beam material,(kN/m2).

I= moment of inertia of the beam section (m4)

A=cross-sectional area of the beam(m2). 

b= width of the beam,(m).

h= depth of the beam,(m).

q=q(x) is the  intensity of the distributed loading on the beam ,(kN/m).
2. Numerical Solution by Finite Differences Method

For the interior nodes, the central difference is always for node (i), while backward or forward difference is used for edge nodes. The central difference for the first, second, and fourth derivatives are:
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              (4) 

Where 

y= is the function of w or u

(x= small divided piece on x-axis

The basic equations (1 –a and b) in finite differences are applied at any node (i), as follows:
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And in simple form, becomes:


[image: image8.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

223

34

222

24

211211

464

42444

iiii

ii

iiiii

iiiiiii

iiiiiii

hhxzhxhx

hxqx

wxwxwwwuu

CCCC

C

--++-+

éùéù

éù

KKDKKDKD

KDD

-+D+++D-++-=

êúêú

êú

EIEIEIEIEIEIEI

êúêú

êú

ëû

ëûëû

         (6-a)


[image: image9.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

0

2

4

4

1

1

2

1

1

=

+

+

÷

÷

ø

ö

ç

ç

è

æ

EA

D

K

+

-

EA

D

K

+

EA

D

K

-

+

-

C

+

C

-

C

i

i

i

i

i

i

i

i

i

i

i

i

u

u

u

x

i

w

x

h

w

x

h

 


          (6-b)

3. Modeling of Different Configurations of Applied Loadings

Different types of the applied loads can be treated and simulated as uniform load per unit length (q) along the piece (Δx), as follows:

a. distributed load of any function q(x):

Here, calculate the area under the curve q(x) for distance (Δx/2) on each side of node (i) and then divided by Δx, as follows
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b. concentrated loads 

For any node (i) , uniformly distributed load transform to concentrated load acting on the nodes as follows:
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4. Boundary Conditions and Internal Forces

The boundary conditions are:

a. simply supported edge 

No deflection, this gives wo=0    






         (9a)

No bending moment , this gives Mo=0 and then w1= - w-1                



         (9b)

b. fixed supported edge 

No deflection, this gives wo=0                                                          



         (10a) 

No rotation , this gives 
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C. free edge with concentrated moment and load 
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Where 
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and  
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 are the concentrated moment and load at  free edge .

On the other hand, the internal forces ((bending moment and shearing force)) can be determined from strength of materials, as follows [Temoshenko] :
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and
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        (12b)

In finite difference, at node (i) the internal forces become:
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         (13a)             

and
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Or:
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5.Applications

In this section, a examples of non-prismatic beam are analyzed using two cases of boundary conditions: simple supports and fixed supports. Different loading conditions are applied to both cases and the results obtained using the proposed model are validated against those derived from classical solution methods.
5.1 Non-Prismatic beam in depth
In this case , to check the accuracy of the method of finite differences in this field. In Figs.(3), simply supported non-prismatic beam under uniformly distributed load, point load at mid span and two points  load on elastic foundation for two ended supported  , in condition for all non-prismatic beams are the same volume concrete . In this case studied three ratios of depth for beam section (h2=h1, h2=1.5h1 and h2=2h1) were considered as listed below.
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The results of these cases are compared with those available from theory [Hantny 1974] and compared with prismatic beam (h2=h1) [Ali 2010] as shown in Figs. (4,5 and 6).
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The results indicated that present non-prismatic beam decreasing about (76%) in deflection due to UDL when h2=2h1 , (80.9% )in deflection under point load at mid span when h2=2h1 and (81.81%) in deflection due to two point load (P/2)when h2=1.5h1. The maximum deflection happen in UDL when  h2=h1 , it's obtain in figs.(7).



Figs.(8a,b and c) show  the maximum bending moment and shear force occur in non-prismatic beam with h2=1.5h1   under  uniformly distributed load  and the percent of  increasing in bending moment for non-prismatic beam comparing with  prismatic beam about (83.53%) , while decreasing in Shear force due to point load at mid span about (51.64%).
 




For different cases of end supports and their effective on deflection for non prismatic beam which indicated in fig.(9), the result show different about (88.81%) decreasing in deflection due to  point load at mid span  with simply supported beam.
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5.2 Non-Prismatic beam in width
This case study, includes three different value of width for  beam (b2=b1 , b2=1.5b1 , b2=2b1 and depth is constant h=.25m ) in top view are shown in fig.(10). Simply supported non-prismatic beam(2) under uniformly distributed load, point load at mid span and two points  load on elastic foundation for two ended supported  , in condition for all non-prismatic beams are the same volume concrete . 
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The results of these cases are compared with those available from theory [Hantny 1974] and compared with prismatic beam (h2=h1 , b2=b1) [Ali 2010] as shown in Figs. (11,12and 13).
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The results indicated that percent of non-prismatic beam decreasing about (23.2%) in deflection due to two point load (P/2) when b2=2b1 and (27.67%) in deflection due to two point load (P/2)when b2=1.5b1. The maximum deflection happen in UDL when  b2=1.5b1 , it's obtain in figs.(14).




For different cases of end supports and their effective on deflection for non prismatic beam which indicated in fig.(15), the result show different about (88.81%) decreasing in deflection due to  uniformly distributed beam with fixed ended support.



      Fig.(16a,b and c) ,show the results between non-prismatic beam (1) and(2) with h2=2h1 and b2=2b1 under different types of loading. The results indicated the maximum deflection occur in prismatic beam and the present of convergence in deflection about  (98.4% and 96.89%)  between h2=2h1 and b2=2b1 under point load at mid span and two point load at L/3 , respectively.




      The  maximum bending moment in non-prismatic beam(1)with h2=1.5h1 under uniformly distributed load ,point load at mid span and two point load at L/3 acting, the percent of convergence is about( 75.95,80.7 and 81.71%), respectively . These results plotted in fig.(17). While the percent of convergence about (86.66%,21.4% and 94.44%) in shear force under uniformly distributed load, point load at mid span and two point load at L/3 acting, respectively 
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   The effect of end support on the non-prismatic beam (1) and beam (2) with h2=2h1 and b2=2b1 under different types of loading. Fig(18) indicated these effective.
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5.4 Non-Prismatic beam in depth through the span(max. depth at mid span)

Consider the following problem of a single span non-prismatic beam(4) of length L=5m  on elastic foundation as shown in Fig.(19). The depth of the beam at the ends h1=.25m ,b1=.25m and h2=1.5h1 varies to  h2=2h1. The two condition end supported and carrying three different types of loads. E=25*106 kN/m2 , Kz=104 kN/m3 ,q=20 kN/m, P=100 kN.


         The results plotted in Figs.(20)  for beam (4) , the difference between two ended conditions gives (47.18,58.69 and 51.58%) in maximum  deflection under uniformly distributed load , point load at mid span and two point load at L/3, respectively. 
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Finally ,the effect of varying of non-prismatic beam cross-section under three cases of loading can be explained in Fig.(21). From this results, it can be noticed that the maximum deflection occur in non-prismatic beam (3) under UDL and  point load at mid span with the large depth at the ends of the beam, with percent of decreasing about (87.98 and 35.29%), respectively. While , the two  points  load at (L/3) of span is acting the maximum deflection occur in non-prismatic beam (4) with the large depth at the mid span of the beam with percent  about (74.42%).
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    From following Fig.(22), it can be plotted there is pronounced increasing of bending moment about(34.75 and 50.19%) for non prismatic beam(4) compared with  bending moment in beam(3) due to uniformly distributed load and point load at mid span , respectively. While , the percent of decreasing in bending moment in beam(4)  about (13.15%) due to two point load acting at L/3.
          On the other hand, the convergence of shear force about  (69.86,15.74 and 20.90%) for beam (3) and beam(4) under uniformly distributed load, point load at mid span and two point load at L/3, respectively.  
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5. Non –Prismatic Cantilever Beam
        The non prismatic beam with three separate segments, shown in Fig. (23), is considered, and fixed at the left end. This example is notable as it will illustrate the efficiency of the procedure to deal with both kinds of discrete and smooth discontinuities simultaneously. The ﬁrst half of the beam is tapered smoothly, with the depth of the rectangular section varying linearly from (2h to h). At the midpoint of the second half, section depth drops abruptly from (h to h/2). The sample beam with the length (L= 8 m) , depth (h= 0.4 m)  , width ( b= 0.1 m) , and elastic modulus (E = 210 GPa ) , under two types of load (concentrated load  P= 50 kN at the free end, and uniform distributed load q= 10 kN/m.

From following Fig.(24), it can be noticed that little difference between the present numerical analysis and the procedure to ﬁnd the exact shape functions and stiffness matrices of non-prismatic beam elements for the Euler Bernoulli and Timoshenko formulations. [Shooshtrai 2010]  , the percentage of convergence is equal to (91%) , on the other hand,  from these result  the effect of modulus sub-grade frictional resistance at interface was found to be noticeable about (15%).
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6.Conclusions
From the numerical analysis of many problems of non-prismatic beams on elastic foundation with comparison of prismatic beam under effect of different configurations of loading and  end conditions, many conclusions can be drawn: 

The results indicated that present non-prismatic beam decreasing about (80.67-81.81%)and(75.99-81.81% )in deflection  for longitudinal  direction (width of beam b) and transverse direction (depth of beam h) , respectively for different cases of loading.
The present numerical analysis and the procedure for another procedure  , the percentage of convergence is equal to (91%) , on the other hand,  from these result  the effect of modulus sub-grade frictional resistance at interface was found to be noticeable about (15%).

1- The  value of maximum bending moment is the same  in h2=2h1 and b2=2b1 but the location of these values is changed under uniformly distributed load and two point load at L/3 acting, but the percent of convergence is about ( 75.95,80.7 and 81.71%) in bending moment under point load acting. 
2- The results  shows  that the percent of convergence about (86.66%,21.4% and 94.44%) in shear force under uniformly distributed load, point load at mid span and two point load at L/3 acting, respectively .

3- The maximum deflection occur in non-prismatic beam (3) under UDL and  point load at mid span with the large depth at the ends of the beam, with percent of decreasing about (87.98 and 35.29%), respectively. While , the two  points  load at (L/3) of span is acting the maximum deflection occur in non-prismatic beam (4) with the large depth at the mid span of the beam with percent about (74.42%).

4- Increasing of bending moment about(34.75 and 50.19%) for non prismatic beam(4) compared with  bending moment in beam(3) due to uniformly distributed load and point load at mid span , respectively. While , the percent of decreasing in bending moment in beam(4)  about (13.15%) due to two point load acting at L/3.

5- The convergence of shear force about  (69.86,15.74 and 20.90%) for beam (3) and beam(4) under uniformly distributed load, point load at mid span and two point load at L/3, respectively.  
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Notation


w = w(x) is the deflection (m).


u = u(x) is the horizontal displacement in the neutral axis (m).


Kz= modulus of sub grade reaction in z-direction multiplied by the width of the beam (b),(kN/m3).


E = modulus of elasticity of the beam material,(kN/m2).


I= moment of inertia of the beam section (m4)


A=cross-sectional area of the beam(m2). 


b= width of the beam,(m). h= depth of the beam,(m), (x= small divided piece on x-axis.


q=q(x) is the  intensity of the distributed loading on the beam ,(kN/m).


� EMBED Equation.3  ���and  � EMBED Equation.3  ��� = the concentrated moment and load at  free edge .
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Fig.(1) FDM discretization of  the  elastic beam
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Fig.(2)UDL on elastic beam and distributed of nodes





Fig.(2)Point  Load on elastic beam and distributed of nodes
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b1= h1=.25m


L=5m, Δx=.5m


E=25*106kN/m2


Kz=104kN/m3











Fig.(3) Non-Prismatic Beam (1) a) UDL(20kN/m)  b) Point load(P=100kN)    c) Two Points Load(P/2 











Fig(4) Non-prismatic beam(1) under UDL





Fig(5) Non-prismatic beam(1) under point load at mid span





Fig(6) Non-prismatic beam(1) under  Two Point Load at L/3 of span
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Fig(7)  Effect of  Different  types of load  on the non-prismatic beam(1)  deflection.


h2=1.5h1     b.  h2=2h1
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Fig.(8) Bending moment for non-prismatic beam (1) under different types of loading.


UDL    b.   Point load at mid span    c. Two point load 





Fig.(9) Non-prismatic beam (1) under point load at mid span with different types of supported.








Fig.(10) Non-prismatic beam (2) under different types of loading.


Top view of beam    b. UDL    c.   Point load at mid span    d. Two point load 
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Fig(11) Non-prismatic beam (2)under UDL








Fig(12) Non-prismatic beam(2) under Point Load at Mid
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Fig(13) Non-prismatic beam(2) under Two Points Load
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Fig(14)  Effect of  Different  types of load  on the non-prismatic beam(2)  deflection.


 b2=1.5b1     b.  b2=2b1
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Fig.(15) Non-prismatic beam (2) under uniformly distributed beam with different           types of supported.
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Fig.(16) Non-prismatic beam (2) and (1) with h2=2h1 and b2=2b1 under different types of loading.


                a. UDL    b.   Point load at mid span    c. Two point load 
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Fig.(17) Bending moment for non-prismatic beam (1) and beam (2) under different types of loading.


UDL    b.   Point load at mid span    c. Two point load 
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Fig.(18) Deflection for non-prismatic beam (1) and beam (2) under different types of loading with   two types of end support.      a. UDL    b.   Point load at mid span    c. Two point load.
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Fig(19) Non-prismatic  beam(4) on elastic foundation a) UDL=20kN/m  b) Point Load at mid span    P=100KN, c) Two Point Load at L/3  P/2=50KN. 
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Fig.(20) Deflection for non-prismatic beam (4) with types of support


a. UDL    b.   Point load at mid span    c. Two point load.
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Fig.(21) Deflection in  non-prismatic beam (3)  and non-prismatic beam (4)  with types of support


a. UDL    b.   Point load at mid span    c. Two point load.
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Fig.(22) Bending Moment in  non-prismatic beam (3)  and non-prismatic beam (4)


a. UDL    b.   Point load at mid span    c. Two point load.
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Fig(23) Simple Non-prismatic  Cantilever beam [Shooshtrai 2010]





Fig(24) Deflection on Non-prismatic  cantilever beam .











1484
1485

_1195834021.unknown

_1195838055.unknown

_1414348054.unknown

_1414348395.unknown

_1414349493.unknown

_1234449029.unknown

_1402128306.unknown

_1402128334.unknown

_1400013408.unknown

_1233515143.unknown

_1195834798.unknown

_1195835051.unknown

_1195837685.unknown

_1195834763.unknown

_1195734555.unknown

_1195746410.unknown

_1195749341.unknown

_1195734913.unknown

_1195667533.unknown

_1195667739.unknown

_1195667405.unknown

