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ABSTRACT

       The lower bounds for the size of µ- blocking sets where µ = 7  is unknown except for  µ ≤6 .In this work we  finding lower bounds for the size of  7-blocking set  we obtain three  main results about  it in Galois geometries .These bounds are proved in the case q is square ,which are the following results  theorems.

الخلاصة
.µ ≤6 مجهول  باستثناء  µ = 7  حيث ان µ- المجموعة القالبية  ان الحد الأدنى لحجم         

 في هذا البحث قمنا بايجاد الحد الادنى لحجم المجموعة القالبية -7 وحصلنا على ثلاث  نتائج رئيسية حول الحدود الدنيا للمجموعة القالبية - 7 في هندسة گالوا وهذه الحدود برهنت في حالة q مربع ويمكن إيجاز هذه النتائج  في النظريات .
1.Introduction:
       Évariste Galois (French pronunciation: [evaʁist ɡalwa]) (25 October 1811 – 31 May 1832) was a French mathematician born in Bourg-la-Reine. While still in his teens, he was able to determine a necessary and sufficient condition for a polynomial to be solvable by radicals, thereby solving a long-standing problem. His work laid the foundations for Galois theory and group theory, two major branches of abstract algebra, and the subfield of Galois connections. He was the first to use the word "group" (French: group) as a technical term in mathematics to represent a group of permutations. A radical Republican during the monarchy of Louis Philippe in France, he died from wounds suffered in a duel under questionable circumstances[ Ball ,2009] at the age of twenty. In my dissertation, p always denotes an arbitrary prime and q=pn(n≥1)always denotes an arbitrary prime power (that can also be a prime).GF(q)denotes the finite field with q elements, and F can denote an arbitrary field (or alsoa Euclidean ring)[ Bertrand,1899],[Caroline,2008],[ Dupuy,1896],
[ Rigatelli, 1996],[ Verdier,2003].

    Galois geometry is geometry over a finite field (a "Galois" field), particularly algebraic geometry and analytic geometry; it is a branch of finite geometry. Objects of study include vector spaces (and affine spaces) and projective spaces over finite fields. More narrowly, a Galois geometry may be defined as a projective space over a finite field. Algebraic geometry is a branch of mathematics which combines techniques of abstract algebra, especially commutative algebra, with the language and the problems of geometry. It occupies a central place in modern mathematics and has multiple conceptual connections with such diverse fields as complex analysis, topology and number theory. Initially a study of polynomial equations in many variables, the subject of algebraic geometry starts where equation solving leaves off, and it becomes at least as important to understand the totality of solutions of a system of equations, as to find some solution; this leads into some of the deepest waters in the whole of mathematics, both conceptually and in terms of technique[Dembowski,1968],[ Hirschfeld,1979],[ Hirschfeld, 1991],[ Landjev and Storme, 1996],[ Segre,1976].

    In this paper, PG(d, q) denotes the projective Galois geometry of dimension d over the finite field GF(q). when one identifies the vector lines of V(N+1, q) as being the points of PG(N, q),These finite projective spaces PG(N, q) are also called Galois geometries[Hirschfeld,1979],[ Hirschfeld, 1991].
      A µ- blocking set in a projective plane  is a set S of points with the property that each line contains at least  µ points of S. A 1- blocking set is known as a blocking set and is defined with the extra condition that it should contain no line. If µ = 2 or 3 such sets are known as double or triple blocking sets respectively[Ball ,2009],
[Hirschfeld,1979],[Storme ,2010].Non-trivial µ -blocking set B in PG(2,q)does not contain a line ,and  q+r(q) +1 = size of smallest non-trivial blocking set in PG(2,q) ,r(q) = (q+1)/2 for q>2 prime, r(q) =
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 for q square ,r(q) =q2/3for q cube power[Storme ,2010].  From now on ,we will consider non-trivial 7-blocking sets only. In PG(2,q),q is square a non-trival µ-blocking set B of size 
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 is called a Baer subplane with the property that every line joining two points of B contain precisely ,
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points of B ,and this line called Baer subline. The field GF(q)
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{∞}can be identified with the projective line PG(1,q).it contains the Baer subline GF(
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)
[image: image6.wmf]È

{∞}.[Hirschfeld,1979].

2. µ-Blocking Sets in PG(2,q)

    In this section we review the known results containing important information about the possible sizes of µ-blocking sets in PG(2;q) which we shall use subsequently. Suppose that 2≤ µ≤q .
Proposition( 2.1) [Ball ,2009]. If B is a proper subset of the points of PG(2;q) and it is A µ- blocking set then |B|≥ µ(q+1).

Proof: Let PϵPG(2;q)\B be a point not in the blocking set. There are q+ 1 lines through P and each lines contains at least µ points of B(and these points are distinct).

Theorem (2.2) [Blokhuis ,1994]: Let B be a µ -blocking set with respect to lines in
[image: image1.wmf]q


 PG(2;p) where p is an arbitrary prime. If 2≤ µ≤q then
Theorem( 2.3) [Ball ,2009]: Let B be a µ -blocking set in PG(2;q). If B contains no
line then it has at least  
[image: image7.wmf]1

qq

mm

++

points.

Theorem (2.4)[ Blokhuis ,2007]:  Let  B  be a µ -blocking set in PG(2;p), p >3prime.
1. If µ < p/2then |B|≥( µ +1/2)(p+1).
2.If µ>p/2then|B|≥( µ +1)p.

Theorem( 2.5) [Ball ,2009]: Let B be a µ -blocking set in PG(2;q),where µ<min(q1/6,q1/4/2).if d≥2,p>3,q=p2d then |B|≥
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Theorem( 2.6) [Ball ,2009]: Let B be a µ -blocking set in PG(2;q),where
µ<min(q-1/3,q1/6,q1/4/2).if d≥2,p>3,q=p2d then |B|≥
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The following properties of a Baer subline will be used as well [Hirschfeld, 1979]:

1-the intersection of dual Baer subline with line is a Baer subline.

2-two Baer subline intersect in at most two points.

3-if one has two points  and two dual Baer subline through these points so that  the line joining the two points belongs  to both Baer subline, then the intersection of the lines of these Baer sublines contain a Baer subplane.
3. Lower Bounds of  The Size  of  7-Bloking Sets

   The object of this section is to obtain good lower bounds for the size of a 7-blocking sets in PG(2,q),q is square. Using the results in the previous section we are now able to prove the following .

Lemma(3.1):
Let B be 7-blocking set of size k in PG(2,q);|B|=k ,if L is an i-secant to B ,then k≥i+7q

Proof : Let P be a point in L\B , since every another line through P containing at least 7 points of B then |B|≥ 7(q+1-1) +i then k≥i+7q.

Theorem(3.2):

Let  B be a 7-blocking set in PG(2,q),q is square ) 
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 lines containing at least  
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 points of B and forming a dual Baer subline ,then |B|≥
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Proof:

 Calling the line meeting B in at least
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 points long line if two long lines meet outside B ,then |B|≥2(
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)+7(q+1-2)= 
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,If every two long lines meet in B, let L be a long line and P
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B not on L.
The long line through P containing a dual Baer subline and meet L in Baer subline ,let Q be a point on this Baer subline ,consider long lines through a point of 7-secant to Q these long lines meet L in another Baer subline not containing Q ,since two   Baer subline meet in at most two points ,so L has at least 2(
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) -2=2
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points.
So every long line has at least 2
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points of B. Hence


[image: image21.wmf]||1(1)(21)6(1(1))85

Bqqqqqq

³++-++-+=-


Since 8q-5
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,for  
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 7<then |B|≥ 
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Lemma(3.3):

for
[image: image26.wmf]q

<33,q is square let B be a 7-blocking set in PG(2,q),having through every point at least
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lines , containing at least
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points of B and forming a dual then |B|≥
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points.

Proof:

Let B behave fewer than
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,points call lines meeting B in at least
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points long lines ,take 21 points on long line L then at least 21(
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 )points of B\L laying on the long lines through these 21 points with multiplicity since B\L containing less than(
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of points ,so there exists more than21
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 )-3(
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)=120
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of points on four or more long lines through 21 points (with multiplicity).
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Let P i  be a point of B\L joined to at least four of these 21 points on L by long line .let Si be the point of L at which the long line through P i meet L ,the set Si has most 
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points other wise P i  lies on at least
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 long lines. So that B contains at least 
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The bound obtained (since B has fewer than(
[image: image43.wmf]737

qq

++

).
By assumption  bi  contains a baer subline  bi, since there exists 120      points in B\L(with multiplicity) meeting four of the 21 points.
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 There exist 120
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 points the corresponding bi of which meet at least three of the 21 points .So there are 
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=1330 different sets of three points of these 21 points. There exists P1,P2 correspond to b1,b2 of which meet at least 3 points ,since two a baer subline  meet at least two points , b1≡b2

If 3 long lines meet in P
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B then B has at least

There exists no 3 long lines meet outside B, so there exists at most two long lines meet outside .The long lines through P1,P2 meet L in at most one point outside B and 
the point lies on the long line joining P1,P2.Let S be the set of points of L∩B at which b1≡b2 meet L∩B ,then S has 
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 points. We prove L contains at least 
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points of B.First assume L contains less than 
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 points of B, let T be the set points of B\L that lie on non-long lines meeting S. there exists at least 6(
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points of B, since the long lines through a point of T meet at most two points of S forming at most 9 points of a real line points of L
[image: image53.wmf]∩ B. Let n be the maximal such that n points of T are collinear.Each point of B lies on at least 
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long lines , each point of T have at least 
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long lines meeting L\B .That is there exist q+1-(
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)points L\B, n(
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 long lines meting L outside B and at most  
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 points ,collinear ,then
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 contradiction for
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Since L was arbitrary , then every long line containing at least 
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 points of B ,assume  
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of these long lines meet in a point in B.
|B|≥1+(
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contradiction.

So every point of B lies on exactly
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 long line L contains exactly
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 points of B ,define S,T and n as before.

n(
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 , and that also contradiction,
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Since L is arbitrary ,then every long line contain at least
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 points of B. So |B|≥
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,that is also contradicts the number of points of B. Hence |B|≥ 
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Theorem(3.4):

(for
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<33,q is square ).Let B be a 7-blocking set in PG(2,q),such that each of its points is one of the following :

(1)the meet of a secant of length 2
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 or more and 
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 secant each of length at least
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(2) the meet of two i- secant of length 2
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 or more and 
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 -2 secant each of length at least
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(3) the meet of at least 
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 lines that meet B in at least 
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 points and contain each dual Baer subline then  |B|≥
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Proof:
Call the secant of length 2
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 or more every long line and the  secant  of length 
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 long line and call this point of type 3 is special point .if  very points of B is of type 3,then by lemma(3.3) |B|≥ 
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,now assume that ɮ is the number of very long lines and assume ɮ is non-zero and hence B has at least 2
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   Assume B has points fewer than 
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 that implies ,very long line meet long lines and other very long line in B because if they meet in point meet not in the B,
|B|≥ 
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   Assume every very long line has exactly 2
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 points, there exists  at least 
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Consider L to be a very long line and P be a special points P 
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 L, the long lines through P meet L∩B in a set containing a Baer subline.
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Q in this Baer subline 
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 in another Baer subline  in L∩B not containing Q. This is since ,there is a special point on 7-secant through Q so the long lines through Q containing at most 
[image: image109.wmf](6/2)

qq

+-Á

special point ,and this always less than the total number of special point ,so L∩B split into two disjoint dual Baer subline  and 5 points or L has at least 
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   Assume L  split into two dual Baer subline  and 5 points take Q1 point of type 1 and Q2 point of type 2 in separate Baer subline  in L∩B. if  every point of type 1 ɮ=1.if  every point is of type 2,then ɮ=2
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 and take two points Q1,Q2 of type 2.The long line through Q1 containing at most 
[image: image113.wmf](6(1)/2)

qq

+-Á-

special points.

   The long line through Q2 meet at most 
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special point ,the number of special point joined Q1,Q2 by 7-secant is
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.Similarly if every point is of type 1,then ɮ=1,and take the two points Q1,Q2 of type 1.
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  Similarly for ɮ=2
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If a long line has 
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Long lines. Every long line has at least
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The number of points through Q2
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