

Journal of Babylon University/Pure and Applied Sciences/ No.(1)/ Vol.(19): 2011


On the Characters a Quaternion Group Q2n Where n=pr , r(Z+ and p is any Prime Number and p( 2

Nesir Rasool Mahamoed

University of Kufa

Abstract

In this research, we present an important result on the characters of the quaternion group Q2n where n=pr and r(Z+ and p is any prime number and not equal to 2, and the main result is the following proposition:-

Every rational valued characters of the quaternion group can be written as Z-linear combination of induced characters 
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, Ci runs over all cyclic subgroup of Q2n.

الخلاصة
في هذا البحث توصلنا الى النتيجة الاتية حول شواخص الزمرة Q2n عندما n=pr وان r عدد صحيح موجب و p عدد اولي اكبر من 2 وكانت النتيجة الرئيسية هي الاتية:-

كل شاخص من شواخص الزمرة Q2n (في حالة n=pr) يمكن التعبير عنه بصيغة تركيب خطي للشواخص المحثثة 
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حيث معاملاتها اعداد صحيحة وان Ci زمرة جزئية من الزمرة Q2n.
Introduction

Let Q2n  be a quaternion group, and Q a rational field, two elements  X and Y of Q2n are called Q-conjugate if the cyclic group generated by X is conjugate to  the cyclic group generate by Y. This defines an equivalence relation on Q2n,  their equivalence classes are called the (-classes of Q2n, let these be
1 = (1, (2, … (m

Let xi ( (i be the representative of the class (i and Ci = <Xi>.

Due to Artin theorem asserts if G be a finite group and ( be a rational valued character of G then;
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…(1)

So according to this theorem each valued character  ( of Q2n  can be written as:
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In the present paper, we have proved that each rational valued character ( of Q2n, which is expressible as in (1) with ai ( Z, where n=2r such that r is positive integer number i.e.
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There is no doubt that the problem of constructing the rational valued characters table of Q2n, where n=2r and r(Z+ and p is any prime number, and p(2, would be rather simplified if we knew that each rational valued characters of Q2n can be written as a Z-linear combination of the induced characters 
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On the group K(Q2n)

Definition (1) : For each positive integer n the general quaternion group of order 4n can be defined as follows:

Q2n = {<X, Y> : X2n = Y4 = 1 , Y(Y-1 = X-1}

For more information see [Board et al., 1973; Curtise, 1988)
Definition (2): Let Cf (G, Z) be the set of all Z-Valued class function of G which are constant on Q-Classes. Let R(Q, Z), be the intersection of Cf (G, Z) with R(G) the group of generalized characters of G. 
R(Q, Z) is a finitely generated Z-module with bases Q-Characteristics of G.
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And rank m, we will denote by K(G) the factor group 
[image: image8.wmf]Z)

R(Q,

Z)

Cf(G,

 
Theorem (1):
 For a finite group G, we have;
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For proof see (Kirdar, 1988)
Theorem (2): Let G be a finite group, {Ci = <Xi> , 1 ( I (m} set of non-conjugate cyclic subgroups of G, and ni be the number of conjugate cyclic subgroup of G contained in the Q-Class (i, then each rational valued character of G can be written as a Z-linear combination of 
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for proof see (Kirdar, 1988)
Corollary 1:
 The rational valued characters of a cyclic group Cn of order n can be written as a Z-linear combination of characters 
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, where Ci runs over the set of subgroup of Cn.

For proof see(Kirdar, 1988).

Lemma 1: Let m be the number of Q-classes (i of Q2n, where n is an odd number, then m=m1+1, where m1 is the number of Q-classes (i of the cyclic subgroup C2n=<X>.

For proof see (Mohamoed, 1995).

Corollary 2: We have,
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The main result
In this article we shall prove the following 

Proposition

Every rational valued character of the quaternion can be written as z-linear combination of induced characters 
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, Ci runs over all cycles subgroup of Q2n, where m is the number of ( classes of Q2n.

Let n=2pr and r is any positive integer number , by theorem (1) we get 
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By corollary (2) we get;
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Further more by equation (1) lemma (1) and corollary (2), we get;
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but;
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and ns = 2 
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Also, by equation (2) and equation (3), we get;
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Hence
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On the other hand 
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Since ns=2
, 
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From (5) and (6) we get 
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Then by theorem (3) we have the rational valued characters of quaternion group Q2n, where n=pr for all p is any prime number and r is a positive integer number, can be written as a Z-linear combination of the induced characters 
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, where Ci runs over the set of all subgroup of Q2n.
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