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Abstract
In the resent years we prove some theorems (Bhaya et.al,2006) about some probabilistic inequalities. In this paper we introduce an improvement to these inequalities.
1. Introduction   
The aim of this paper is to prove inequalities for probability theory. This paper is an expository account of some probabilistic inequalities which have contributed to our understanding of several families of Banach spaces of interest in functional analysis. In (Bhaya et.al,2006)  we prove the following result:
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Where p is a positive constant. 
2. Martingle inequality
       The aim result of this article  is to introduce an improvement of the Rosenthals inequality and using it we prove a new type of Martingle inequality.


Before we prove our theorem we need the following lemma:
Lemma 2.1
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, we have 
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First let us introduce the following theorem:

Theorem 2.2
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where c is a constant depending on p and q.

Proof:-

Let [image: image44.png]


 and [image: image46.png]


 be the sub [image: image48.png]


 fields of [image: image50.png]


 generated by [image: image52.png]


 and [image: image54.png]L3
Uicns1-k 2
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 and so the the result follows by  (1.1) first with respect to [image: image58.png]
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Remark 2.3
 Further results about conditional expectations with respect to independent sub [image: image66.png]
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 may be found in (Bryc et.al,1979) and (Carathors et.al,1988) .
 A short proof of theorem 2.2 ( in the case q=1 ) may be found in (Hitczenko ,1990). For general convex functions of theorem 2.2 see (Burkholder ey.al,1972) and (Carsia ,1973) . There is a version of this theorem rearrangement invariant spaces with finite upper Boyd index in (Johnson et.al,1988) .
3. Dilworth inequality type

In (Dilworth ,1991) proved :
Proposition 3.1
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Then he present an extension of this proposition to the range [image: image77.png]0<p<l



and he introduce some function space on [image: image79.png](0,0)



. And he defined
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To get 
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In this article we extend Dilworth's theorem and prove the following theorem:
Theorem 3.2 
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First for the left hand side we have
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Secondly
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  (Carathors et.al, 1988)
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Since [image: image116.png]0<p<l



 so that 
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This complets the proof                                                                        
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