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Abstract 

       In this Paper we will develop an approach to the solution of differential equation based on finding a group invariant by defining Lie group via the transformation ,     we are giving the finite form of the group 
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الخلاصة
    ان الهدف الرئيسي من هذا البحث هو أيجاد نموذج رياضي لحل معادلات تفاضلية من الرتب العليا عن طريق أيجاد مجموعة ثابتة من خلال تحديد طريقة   Lie group  وباستخدام تحويل 
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 ومن مميزات هذا التحويل يمكننا تحديد مجموعة الحل بأسلوب أكثر دقة .  
1- Introduction:-

In mathematics a Lie group  is a group which is also a differentiable manifold, with the property that the group operations are compatible with the smooth structure. Lie groups are named after Sophus Lie, who laid the foundations of the theory of continuous transformation groups.[ L. Dresner,  Applications of Lie’s Theory  of Ordinary and Partial Dif ferential Equations, Institute of Physics Publishing,  Bristol, 1999]

Lie groups represent the best-developed theory of continuous symmetry of mathematical objects and structures, which makes them indispensable tools for many parts of contemporary mathematics, as well as for modern theoretical physics. They provide a natural framework for analyzing the continuous symmetries of differential equations (Differential Galois theory), in much the same way as permutation groups are used in Galois theory for analyzing the discrete symmetries of algebraic equations. An extension of Galois theory to the case of continuous symmetry groups was one of Lie's principal motivations.

According to the most authoritative source on the early history of Lie groups (Hawkins), Sophus Lie himself considered the winter of 1873–1874 as the birth date of his theory of continuous groups. Hawkins, however, suggests that it was "Lie's prodigious research activity during the four-year period from the fall of 1869 to the fall of 1873" that led to the theory's creation (ibid). Some of Lie's early ideas were developed in close collaboration with Felix Klein. Lie met with Klein every day from October 1869 through 1872: in Berlin from the end of October 1869 to the end of February 1870, and in Paris, Göttingen and Erlangen in the subsequent two years (ibid, p. 2). Lie stated that all of the principal results were obtained by 1884. But during the 1870s all his papers (except the very first note) were published in Norwegian journals, which impeded recognition of the work throughout the rest of Europe (ibid, p. 76). In 1884 a young German mathematician, Friedrich Engel, came to work with Lie on a systematic treatise to expose his theory of continuous groups. From this effort resulted the three-volume Theorie der Transformations gruppen, published in 1888, 1890, and 1893. 

[ P. E. Hydon, Symmetry Methods for Differential Equations, Cambridge University Press, Cambridge,  2000 ]

Lie's ideas did not stand in isolation from the rest of mathematics. In fact, his interest in the geometry of differential equations was first motivated by the work of Carl Gustav Jacobi, on the theory of partial differential equations of first order and on the equations of classical mechanics. Much of Jacobi's work was published posthumously in the 1860s, generating enormous interest in France and Germany (Hawkins, p. 43). Lie's idée fixe was to develop a theory of symmetries of differential equations that would accomplish for them what Évariste Galois had done for algebraic equations: namely, to classify them in terms of group theory. Lie and other mathematicians showed that the most important equations for special functions and orthogonal polynomials tend to arise from group theoretical symmetries. Additional impetus to consider continuous groups came from ideas of Bernhard Riemann, on the foundations of geometry, and their further development in the hands of Klein. Thus three major themes in 19th century mathematics were combined by Lie in creating his new theory: the idea of symmetry, as exemplified by Galois through the algebraic notion of a group; geometric theory and the explicit solutions of differential equations of mechanics, worked out by Poisson and Jacobi; and the new understanding of geometry that emerged in the works of Plücker, Möbius, Grassmann and others, and culminated in Riemann's revolutionary vision of the subject

The infinitesimal Transformation 

By defining a lie group via the transformation 
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 we are giving the finite form of group . consider what happens when 
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Given the identity transformation , we can Taylor expand to obtain 
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If we now introduce the function 
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And just retain the first tow terms in the taylor series expansions , we obtain 
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, this is called the infinitesimal form of the group we will show later that every one-parameter group is associated with a unique infinitesimal group . [ Edwards,C. Henry and Penney,  David E. Differential  Equations:  Computing and Modeling. Upper Saddle River, NJ: Prentice  Hall, 2000]

For example the transformation 
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 for the rotation group 
[image: image15.wmf])

(

e

R

 When 
[image: image16.wmf]0

=

e

 this gives the identity transformation using the approximation 
[image: image17.wmf]....

sin

,

...

1

cos

+

=

+

=

e

e

e

 for 
[image: image18.wmf]1

£

e

 we obtain the infinitesimal rotation group as 
[image: image19.wmf]x

y

y

y

x

x

e

e

+

»

-

»

1

1

,

 and hence 
[image: image20.wmf]y

y

x

-

=

)

,

(

x

 and 
[image: image21.wmf]x

y

x

=

)

,

(

h

the transformation 
[image: image22.wmf]y

e

y

x

e

x

e

e

=

=

1

1

,

 forms the magnification group 
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We will now show that every infinitesimal transformation group is similar or isomorphic to a translation group this means that by using a change of variable we can make any infinitesimal transformation group look like 
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A result that is correct at leading order by virtue of the infinitesimal nature of the transformation and which we shall soon see is exact . we can also write this in the form 
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Integration of this gives solution that are in principle expressible in the form 
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as new variables, then the group can be represented by 
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so that the original group is isomorphic to the translation group 
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2- Infinitesimal Generators and the Lie Series

Consider the change 
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If we retain just this single term , which is consistent with the way we derived the infinitesimal transformation ,we can see that 
[image: image49.wmf]df

 can be written in terms of the quantity 


[image: image50.wmf]y

x

U

¶

¶

+

¶

¶

=

f

h

f

x

f

  or in operator notation  
[image: image51.wmf]y

x

U

¶

¶

+

¶

¶

=

h

x

                 …(3)

This is called the infinitesimal generator of the group . Any infinitesimal transformation is completely specified by 
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And if the group acts on 
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Let now consider a group defined in finite from by 
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This is Known as Lie series and can be written more compactly in operator from as 
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These two relation are a representation of the group in finite from . It should now be clear that we can calculate the finite of the group from the infinitesimal group ( Via the Lie series ) and the infinitesimal group from the finite form of the group ( Via expansions for small 
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The finite form is therefore 
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Similarly 
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And we have the rotation group 
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There is a rather more concise way doing this , using the fact that
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3-Integration of a first order equation with a Known group invariant
To show more explicitly that this group invariance property will load to a more tractable differential equation than the original lets consider a general first order ordinary differential equation 
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The solution curves of this partial differential equation where
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We now show that if we Know 
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From which we see that 
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The first of these equations has the solution 
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Again , one solution of this system is 
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This particularly simple system has solution 
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4-Higher order Equation

These ideas can be extended to higher order equation , we obtain with an nth order equation 
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The function in the prolongation formulas are determined following the procedure demonstrated in above they are recursively related
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The operator 
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If one or more generator can be constructed a dependent coordinate 
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As a result of Lie group can be used to reduce in nth order equation to an (n-1) order equation
5-Examples :- 

1-  the differential equation 
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This is the separable equation that we are promised by the theory we have developed the final integration of the equation can be achieved by the successive substitutions 
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2- Consider the equation 
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   In this case    
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If now choose 
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It is not easy to solve this equation in general , but after some trial and error we can find the solution 
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 the procedure outlined in the last section we now solve
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With solution 
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Conclusion:-
    In this paper we have attempted to give a simple, self-contained introduction  to the use of  Lie group methods  for the solution of first-order  ODEs and higher order ODEs .  The method  applied  to  such  equations  is particularly nice in that  a geometric interpretation can be given.  The  Lie group method  of solving higher order ODEs, and systems of differential equations  is more involved, but the basic idea is the  same:  we find a coordinate  system  in which the equations are simpler and exploit this simplification
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