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Abstract

     The purpose of this paper is to construct the concept of fuzzy proper mapping in fuzzy topological spaces . We give some characterization of fuzzy compact mapping and fuzzy coercive mapping . We study the relation among the concepts of fuzzy proper mapping , fuzzy compact mapping and fuzzy coercive  mapping and we obtained several properties.

الخلاصة 
الهدف من هذا البحث هو بناء التطبيق السديد الضبابي في الفضاء التوبولوجي الضبابي . ونعطي بعض خصائص التطبيق المتراص الضبابي والتطبيق الاضطراري الضبابي . ودراسةالعلاقة بين المفاهيم التطبيق السديد الضبابي , والتطبيق المتراص الضبابي والتطبيق الاضطراري الضبابي والحصول على العديد من الخصائص . 
1. Introduction 

     The concept of fuzzy sets and fuzzy set operation were first introduced  by ( L. A. Zadeh ). Several other authors applied fuzzy sets to various branches of mathematics . One of these objects is a topological space .At the first time in 1968 , (C .L. Chang) introduced and developed the concept of fuzzy topological spaces and investigated how some of the basic ideas and theorems of point – set topology behave in this generalized setting . Moreover , many properties on a fuzzy topologically space were prove them by Chang 's definition .
        In this paper we introduce and discuss the concepts of fuzzy proper mapping correspondence from a fuzzy topological space to another fuzzy topological space and we obtained several properties and characterization of these mappings by comparing with the other mappings .

2. Preliminaries 

     First , we present some fundamental definitions and proposition which are needed in the next sections .

Definition 2.1.(M. H. Rashid and D. M. Ali).  Let [image: image1.png]


 be a non – empty set and let [image: image2.png]


 be the unit interval , i.e., [image: image3.png]


.  A fuzzy set in [image: image4.png]


 is a function from [image: image5.png]


 into the unit interval [image: image6.png]


 ( i.e., [image: image7.png]X —[01]



 be a function ) .  
[image: image8.png]


A fuzzy set [image: image9.png]


 in[image: image10.png]


 can be represented by the set of pairs : [image: image11.png]A={(x,A(x)):x € X}



. The family of all fuzzy sets in [image: image12.png]


 is denoted by [image: image13.png]


 . 

Remark 2.2.

[image: image14.png]O]



 [image: image15.png]


 ( the empty set ) is a fuzzy set which has membership defined by [image: image16.png]0x(x) =0



   for all [image: image17.png]x € X



.  

[image: image18.png](if) 15



( the universal set ) is a fuzzy set which has membership defined by [image: image19.png]Iy(x)=1



 for all [image: image20.png]x € X



 .

Definition 2.3.  let [image: image21.png]


 ,  [image: image22.png]


 and [image: image23.png]


   be any fuzzy sets in [image: image24.png]


 . Then we put :
 [image: image25.png]O]



 [image: image26.png]


 if and only if [image: image27.png]A(x) < B(x)



 , [image: image28.png]VXEX



; 

[image: image29.png]


 [image: image30.png]


 if and only if  [image: image31.png]A(x) = B(x)



 , [image: image32.png]VXEX



;

[image: image33.png](iid)



 [image: image34.png]Z=ANB



 if and only if [image: image35.png]Z(x) =min{ A(x),B(x)}



,[image: image36.png]VxEX



 ; [image: image37.png](z



is a fuzzy set in  [image: image38.png]


) ;

[image: image39.png](iv)



 [image: image40.png]Z=AVB



 if and only if [image: image41.png]Z(x) = max {A(x),B(x)}



,[image: image42.png]VXEX



;  [image: image43.png](z



is a fuzzy set in  [image: image44.png]


) ;

([image: image45.png]


  [image: image46.png]


 if and only if [image: image47.png]Z(x) =sup {A;(x)/ i€ 1},



 [image: image48.png]VXEX(Z



is a fuzzy set in  [image: image49.png]


) ;

[image: image50.png]


 [image: image51.png]


 if and only if [image: image52.png]Z(x) =inf{A;(x)/ i€},



 [image: image53.png]VXEX(Z



is a fuzzy set  in [image: image54.png]


) ; 

[image: image55.png]


 [image: image56.png]


 ( the complement of[image: image57.png]


) if and only if  [image: image58.png]E(x)=1—A(x)



 ,  [image: image59.png]VXEX



;

[image: image60.png]


 [image: image61.png](A\B)(x) =A(x)AB°(x) VxE€X



 .

Definition 2.4. (M. H. Rashid and D. M. Ali). Let [image: image62.png]


 and [image: image63.png]


 be two non – empty sets [image: image64.png]f:X—>Y



 be function . For a fuzzy set [image: image65.png]


 in [image: image66.png]


 , the inverse image of [image: image67.png]


 under [image: image68.png]


 is the fuzzy set  [image: image69.png]f~(B)



 in [image: image70.png]


 with membership function denoted by the rule :

[image: image71.png]FH
(B
) (2
x) = B(f(
x))



 for [image: image72.png]x € X



  ( i.e.,[image: image73.png]7
B)=B
of



).

     For a fuzzy set [image: image74.png]


 in [image: image75.png]


  , the image of [image: image76.png]


 under [image: image77.png]


 is the fuzzy set [image: image78.png]f(4)



 in [image: image79.png]


 with membership function  [image: image80.png]f(A )



,  [image: image81.png]yEY



 defined by 

[image: image82.png]FA0) = {x‘r“?m A o=
R





Where [image: image83.png]f ()
)




 .

Definition 2.5.(B. Sikin)and(M. H. Rashid and D. M. Ali). A fuzzy point [image: image84.png]


in [image: image85.png]


 is a fuzzy set defined as follows
[image: image86.png]()

a

ify=x
ify#x




     Where  [image: image87.png]0<as1



; [image: image88.png]


 is called its value and [image: image89.png]


 is support of [image: image90.png]


 . 

     The set of all fuzzy points in [image: image91.png]


 will be denoted by [image: image92.png]FP(X) .




Definition 2.6.(A. A. Nouh), (M. H. Rashid and D. M. Ali). A fuzzy point [image: image93.png]


 is said to belong to a fuzzy set [image: image94.png]


 in [image: image95.png]


 (denoted by :  [image: image96.png]€A



 ) if and only if  [image: image97.png]a < A(x)



 [image: image98.png]



Definition 2.7. (A. A. Nouh), (M. H. Rashid and D. M. Ali).  A fuzzy set [image: image99.png]


 in [image: image100.png]


 is called quasi – coincident with a fuzzy set [image: image101.png]


in [image: image102.png]


 , denoted by [image: image103.png]


 if and only if [image: image104.png]A +B(x)>1



 , for some [image: image105.png]x € X



 . If [image: image106.png]


 is not quasi –coincident with [image: image107.png]


 , then [image: image108.png]A(x)+B(x) =1



 , for every [image: image109.png]x € X



 and denoted by [image: image110.png]


 .
Lemma 2.8.(B. Sikin). Let [image: image111.png]


 and [image: image112.png]


 are fuzzy sets in [image: image113.png]


 . Then :
[image: image114.png]O]



 If [image: image115.png]AAB =




 , then [image: image116.png]


 .

[image: image117.png]


 [image: image118.png]


 if and only if [image: image119.png]A<B°



 .

Proposition 2.9. (B. Sikin). If [image: image120.png]


  is a fuzzy set in [image: image121.png]


, then  [image: image122.png]€A



 if and only if  [image: image123.png]


 
Definition 2.10.(C. L. Chang). A fuzzy topology on a set [image: image124.png]


 is a collection [image: image125.png]


 of fuzzy sets in [image: image126.png]


 satisfying : 

[image: image127.png](1)



 [image: image128.png]0y €T



 and [image: image129.png]1; €T



 ,
[image: image130.png]


 If  [image: image131.png]


 and [image: image132.png]


 belong to [image: image133.png]


 , then [image: image134.png]AABET,




[image: image135.png](iid)



 If [image: image136.png]


 belongs to [image: image137.png]


 for each [image: image138.png]


 then so does [image: image139.png]


 . 

      If [image: image140.png]


 is a fuzzy topology on [image: image141.png]


, then the pair [image: image142.png](x,7)



 is called a fuzzy topological space . Members of [image: image143.png]


 are called fuzzy open sets . Fuzzy sets of the forms [image: image144.png]


 , where [image: image145.png]


 is fuzzy open set  are called  fuzzy closed sets .

Definition 2.11. (M. H. Rashid and D. M. Ali). A fuzzy set [image: image146.png]


 in a fuzzy topological space [image: image147.png](x,7)



 is called quasi-neighborhood of a fuzzy point [image: image148.png]


 in [image: image149.png]


 if and only if there exists [image: image150.png]BET



 such that [image: image151.png]x,qB



 and [image: image152.png]


 . 
Definition 2.12.(M. H. Rashid and D. M. Ali). Let [image: image153.png](x,7)



 be a fuzzy topological space and [image: image154.png]


be a fuzzy point in [image: image155.png]


 . Then the family [image: image156.png]


 consisting of all quasi-neighborhood (q-neighborhood) of  [image: image157.png]


is called the system of quasi-neighborhood of [image: image158.png]


. 

Remark  2.13.   Let [image: image159.png](x,7)



 be a fuzzy topological space and [image: image160.png]A € FP(X)



 . Then [image: image161.png]


 is fuzzy open if and only if [image: image162.png]


 is q – neighbourhood of each its fuzzy point .

Definition 2.14.(A. A. Nouh). A fuzzy topological space [image: image163.png](x,7)



 is called a fuzzy hausdorff (fuzzy [image: image164.png]


- space ) if and only if for any pair of fuzzy points [image: image165.png]X, Vs



 such that [image: image166.png]X #y



 in [image: image167.png]


 , there exists [image: image168.png]AENI ,BENS

/s



and [image: image169.png]AAB =




 

Definition 2.15.(D. L. Foster). Let [image: image170.png]


 be a fuzzy set in [image: image171.png]


 and [image: image172.png]


 be a fuzzy topology on [image: image173.png]


 . Then the induced fuzzy topology on [image: image174.png]


 is the family of fuzzy subsets of [image: image175.png]


 which are the intersection with [image: image176.png]


 of fuzzy open set in [image: image177.png]


 . The induced fuzzy topology is denoted by [image: image178.png]


 , and the pair [image: image179.png](AT,)



 is called a fuzzy subspace of [image: image180.png]


 .
Proposition 2.16.    Let [image: image181.png]


 .Then :
[image: image182.png]O]



 If [image: image183.png]


 is a fuzzy open set in [image: image184.png]


 and [image: image185.png]


 is a fuzzy open set in [image: image186.png]


, then [image: image187.png]


 is a fuzzy open set in [image: image188.png]


 .
[image: image189.png]


 If [image: image190.png]


 is a fuzzy closed set in [image: image191.png]


 and [image: image192.png]


 is a fuzzy closed set in [image: image193.png]


 , then [image: image194.png]


 is a fuzzy closed set in [image: image195.png]


 .

Definition 2.17.(X. Tang),(S. M. AL-Khafaji). Let [image: image196.png](x,7)



 be a fuzzy topological space and [image: image197.png]Aer®



.   Then :
[image: image198.png]O]



  The union of all fuzzy open sets contained in [image: image199.png]


 is called the fuzzy interior of [image: image200.png]


 and denoted by [image: image201.png]


. i.e.[image: image202.png]=v{B:B<A,BET)



 .       

[image: image203.png]


 The intersection of all fuzzy closed sets containing [image: image204.png]


 is called the fuzzy closure of [image: image205.png]


 and denoted by [image: image206.png]


.  i.e. , [image: image207.png]A=A{B:A<B,B°€ET }



 .

Remarks 2.18. (S. M. AL-Khafaji).
[image: image208.png]O]



 The interior of a fuzzy set [image: image209.png]


 is the largest open fuzzy set contained in [image: image210.png]


 and trivially , a fuzzy set [image: image211.png]


 is fuzzy open set if and only if [image: image212.png]


 .

[image: image213.png]


 The closure of a fuzzy set [image: image214.png]


 is te smallest closed fuzzy set containing [image: image215.png]


 and trivially , a fuzzy set [image: image216.png]


 is fuzzy closed if and only if [image: image217.png]


 . 

Proposition 2.19.    Let [image: image218.png](x,7)



 be a fuzzy topological space and [image: image219.png]


 be a fuzzy set in [image: image220.png]


 . A fuzzy point [image: image221.png]


 if and only if for every fuzzy open set [image: image222.png]


 in [image: image223.png]


 , if [image: image224.png]x,qB



 then  [image: image225.png]AqB



 .

Proof : 
[image: image226.png]


Suppose that [image: image227.png]


 is a fuzzy open set in [image: image228.png]


 such that [image: image229.png]x,qB



 and  [image: image230.png]


  . Then [image: image231.png]A<B°



 . But [image: image232.png]x, € B°



 ( since [image: image233.png]x,qB



 , then [image: image234.png]a > B°(x)



 ) and [image: image235.png]


 is a fuzzy closed set in [image: image236.png]


 . Thus [image: image237.png]



[image: image238.png]


 Let [image: image239.png]


then there exists a fuzzy closet set [image: image240.png]


 in [image: image241.png]


 such that [image: image242.png]


 and [image: image243.png]x, € B



 , hence by Proposition ( 2.7 ) ,  we have [image: image244.png]x,qB°



 . Since [image: image245.png]


 , then by lemma ( 2.8 .ii ) ,  [image: image246.png]Aq B°



 . This completes  the proof .

Definition 2.20.(S. M. AL-Khafaji). Let [image: image247.png]


 and [image: image248.png]


 be fuzzy topological spaces . A map [image: image249.png]


 is called fuzzy continuous if and only if for every fuzzy point [image: image250.png]


in  [image: image251.png]


 and for every fuzzy open set [image: image252.png]


 such that [image: image253.png]flx,) EA



 , there exists fuzzy open [image: image254.png]


 of [image: image255.png]


such that [image: image256.png]€B



and [image: image257.png]f(B)<A



 . 

Theorem 2.21. (M. H. Rashid and D. M. Ali).Let [image: image258.png]XY



be fuzzy topological spaces and let[image: image259.png]f:X—>Y



 be a mapping . then the following statements are equivalent :
[image: image260.png]O]



 [image: image261.png]


 is fuzzy continuous .

[image: image262.png]


 For each fuzzy open set [image: image263.png]


in [image: image264.png]


 , [image: image265.png]f~(B)



 is a fuzzy open set in [image: image266.png]


 . 

[image: image267.png]


 For each fuzzy closed set [image: image268.png]


in [image: image269.png]


 , then [image: image270.png]f~(B)



 is a fuzzy closed set  in [image: image271.png]


.

[image: image272.png](iid)



 For each fuzzy set [image: image273.png]


 in [image: image274.png]


 ,  [image: image275.png]B < f1(B)



 .

[image: image276.png](iv)



 For each fuzzy set [image: image277.png]


 in [image: image278.png]


, [image: image279.png]f(A) < f(4)



 .

[image: image280.png](v)



 For each fuzzy set [image: image281.png]


 in [image: image282.png]


, [image: image283.png]f
(B”,
)
=(f(®)



.

Proposition 2.22.  If  [image: image284.png]


 and [image: image285.png]


 are fuzzy continuous , then [image: image286.png]feg:X —Z



 is fuzzy continuous mapping .
Proposition 2.23.   Let [image: image287.png](x,7)



 be a fuzzy topological space and [image: image288.png]


 be a non - empty fuzzy subset of [image: image289.png]


 , then the fuzzy inclusion [image: image290.png](AT) — (x,T)




 is a fuzzy continuous mapping .
Proof Let [image: image291.png]BET



 . Since   [image: image292.png]iy '(B)=BAA



  , then  [image: image293.png]iy '(B)ET,



 . Therefore [image: image294.png]


is fuzzy continuous . 
Proposition 2.24.   Let [image: image295.png]


, [image: image296.png]


 be fuzzy topological spaces and [image: image297.png]


 be a fuzzy subset of [image: image298.png]


 . If [image: image299.png]


 is fuzzy continuous , then the restriction [image: image300.png]fiaA—Y



 is fuzzy continuous . Proof  Since [image: image301.png]


 is fuzzy continuous and [image: image302.png]


 . Then by proposition ( 2. 23 ) and proposition ( 2.22)  , [image: image303.png]


 is fuzzy continuous .
Definition 2.25.   Let [image: image304.png]


 be a mapping of fuzzy spaces . Then [image: image305.png]


 is called fuzzy closed mapping if [image: image306.png]f(4)



 is a fuzzy closed set in [image: image307.png]


 for every fuzzy closed set [image: image308.png]


 in [image: image309.png]


.
Proposition 2.26   If [image: image310.png]


 , [image: image311.png]


 are  fuzzy  closed mapping , then [image: image312.png]gef:X —zZ



 is a fuzzy closed .  

Proposition 2.27. If  [image: image313.png](x,7)



 is a fuzzy topological space and [image: image314.png]


 is a fuzzy closed subset of [image: image315.png]


 , then the fuzzy inclusion [image: image316.png]ig:A— X



 is a fuzzy closed mapping .

Proof  Let [image: image317.png]


 be a fuzzy closed set in [image: image318.png]


Since [image: image319.png]


 is a fuzzy closed in [image: image320.png]


 and [image: image321.png]iy(F)=AAF



, then [image: image322.png]


 is a fuzzy closed set in [image: image323.png]


 . Hence the inclusion mapping [image: image324.png]ig:A— X



 is fuzzy closed  . 
Proposition 2.28.   If [image: image325.png]f:X—>Y



 is a fuzzy closed  mapping and [image: image326.png]


 is  a fuzzy closed set in[image: image327.png]


 then the restriction mapping [image: image328.png]fiaA—Y



 is a fuzzy closed mapping . 
Definition 2.29 .(A. A. Nouh). A fuzzy filter base on [image: image329.png]


 is a nonempty subset [image: image330.png]


of [image: image331.png]


 such that 
[image: image332.png](i)



 [image: image333.png]0y €F



 .

[image: image334.png]


 If [image: image335.png]A, A EF



  , then [image: image336.png]3A;EF



  such that [image: image337.png]Ay SAINA,



. 

Definition 2.30.   A fuzzy point [image: image338.png]


in a fuzzy topological space [image: image339.png]


is said to be a fuzzy  cluster point of a fuzzy filter base [image: image340.png]


 on [image: image341.png]


 if [image: image342.png]


 , for all [image: image343.png]BEF



 .  

Definition 2.31.(A. A. Nouh). A mapping [image: image344.png]S:D — FP(X)



 is called a fuzzy net in [image: image345.png]


 and is denoted by [image: image346.png]{S(n):n € D}



 , where [image: image347.png]


 is a directed set . If [image: image348.png]


 for each [image: image349.png]n€D



 where [image: image350.png]x € X



 , and [image: image351.png]a, € (0,1]



 then the fuzzy net [image: image352.png]


 is denoted as [image: image353.png]{xg, n €D}



 or simply[image: image354.png]=2,



 .
Definition  2.32. (A. A. Nouh). A fuzzy net [image: image355.png]


 in [image: image356.png]


 is called a fuzzy subnet of fuzzy net [image: image357.png]S = {xg,m € D}



 if and only if there is a mapping 
[image: image358.png]


 such that 
[image: image359.png]O]



  [image: image360.png]


that is , [image: image361.png]Ve = .

@
ag



for each [image: image362.png]


 .

[image: image363.png]


 For each [image: image364.png]n€D



 there exists some [image: image365.png]m € E



 such that [image: image366.png]f(m) =zn



 .

  We shall denote a fuzzy subnet of a fuzzy net [image: image367.png]{xz, m €D}



 by   [image: image368.png]Sflm)

Eohe



 . 

Definition 2.33. (A. A. Nouh). Let [image: image369.png](x,7)



 be a fuzzy topological space and let [image: image370.png]S = {xg,m € D}



  be a fuzzy net in [image: image371.png]


 and [image: image372.png]Aer®



 . Then [image: image373.png]


 is said to be:
[image: image374.png](i)



 Eventually with [image: image375.png]


 if and only if [image: image376.png]ImeD



such that  [image: image377.png]Xz, @A,V nzm



.

[image: image378.png](if)



 Frequently  with [image: image379.png]


  if  and only if [image: image380.png]VneD



 , [image: image381.png]ImeED,mz=n



 and [image: image382.png]X,

24

q A



 . 

Definition 2.34. (A. A. Nouh). Let [image: image383.png](x,7)



 be a fuzzy topological space and  [image: image384.png]S

gt

n € D}



 be a fuzzy net in [image: image385.png]


 and [image: image386.png]x, € FP(X)



 . Then [image: image387.png]


 is said to be :
[image: image388.png]O]



 Convergent to [image: image389.png]


 and denoted by  [image: image390.png]S — x,



 , if  [image: image391.png]


 is eventually with [image: image392.png]


 ,  [image: image393.png]vAEN]



 , [image: image394.png]


 is called a limit point of [image: image395.png]


.
[image: image396.png]


 Has a cluster point [image: image397.png]


 and denoted by [image: image398.png]S o x,



 , if [image: image399.png]


 is frequently with [image: image400.png]


 ,    [image: image401.png]vAEN]




  

Remark 2.35.    If [image: image402.png]S — x,



 , then [image: image403.png]S o x,



 . 
      The converse of remark (2. 35 ) , is not true in general as the following example   

Example 2.36. Let [image: image404.png]


 be a set and [image: image405.png]T = {044 1)



 be a fuzzy topological space such that [image: image406.png]Ala) = §



  and let [image: image407.png]


 be a fuzzy net on  [image: image408.png]


.  Notice that [image: image409.png]Xg, O a:



 , but [image: image410.png]Xg, — az



 .

Proposition  2.37.   A fuzzy point [image: image411.png]


 is a cluster point of a fuzzy net [image: image412.png]{xz,

:n€ D}



 , where [image: image413.png](D, =)



 is a directed set , in a fuzzy topological space [image: image414.png]


 if and only if it has a fuzzy subnet which converges to [image: image415.png]


. 

 Proof  [image: image416.png]


Let [image: image417.png]


 be a cluster point of the fuzzy net [image: image418.png]{xz,:m €D}



, with the  directed set [image: image419.png](D, =)



 . Then for any [image: image420.png]


 , there exists [image: image421.png]n€D



 such that [image: image422.png]X,

2

qU



 . Let [image: image423.png]={(nU):n€D,UENZ andx; qU}



. Then [image: image424.png](E,=)



 is directed set where [image: image425.png](mU) = (nV)



 if and only if  [image: image426.png]


 in [image: image427.png]


 and [image: image428.png]


 in [image: image429.png]


 . Then [image: image430.png]


 given by [image: image431.png]3(m,U) = x7,



 is a fuzzy subnet of fuzzy net  [image: image432.png]{xz,:m €D}



 . To show that [image: image433.png]


 . Let [image: image434.png]


 . Then there exists [image: image435.png]n€D



 such that [image: image436.png](n,B) EE



 and [image: image437.png]X,

2

9B



 . Thus for any [image: image438.png](mU)€EE



 such that [image: image439.png](n,U) = (n,B)



 , we have [image: image440.png]3(mU) = x7, qU < B



 . Hence [image: image441.png]


 .
[image: image442.png]


 If a fuzzy net [image: image443.png]


, has not a cluster point . Then for every fuzzy point [image: image444.png]


  there is a fuzzy q- neighborhood of [image: image445.png]


and [image: image446.png]n€D



 such that [image: image447.png]


 , for all [image: image448.png]


 . Then obviously no fuzzy net converge to [image: image449.png]


 .

Theorem 2.38.  Let [image: image450.png](x,7)



 be a fuzzy topological space , [image: image451.png]x, € FP(X)



 and [image: image452.png]Aer®



. Then [image: image453.png]


 if and only if there exists a fuzzy net in [image: image454.png]


 convergent to [image: image455.png]


 .

Proof   [image: image456.png]


 Let [image: image457.png]


 , then for every [image: image458.png]


 there exists 
[image: image459.png]xu(y):{,«(x,,) ¥oor=*
0 if  y#x




Such that [image: image460.png]B(xg) +A(xz) > 1



 notice that [image: image461.png]Vg 2)



 is a directed set , then [image: image462.png]5:NZ — FP(X)



 is defined as [image: image463.png]S(B) = x5



 is a fuzzy net in [image: image464.png]


 . To prove that [image: image465.png]S — x,



. Let [image: image466.png]


 . Then there exists [image: image467.png]FET



 such that [image: image468.png]x,qF



 and [image: image469.png]


 . Since [image: image470.png]Fxf)+xf>1



and [image: image471.png]


 . Then [image: image472.png]D(xf)+xf>1



 . Thus [image: image473.png]4,
xf

'qD



 . Let [image: image474.png]


 , then [image: image475.png]


 . Since [image: image476.png]E(xf)+xf =1



 and [image: image477.png]


 , then  [image: image478.png]D(xf)+xf>1



 . Thus [image: image479.png]4,
xf

'qD



 , [image: image480.png]


 . Therefore [image: image481.png]S — x,



.      

[image: image482.png]


  Let [image: image483.png]


 be a fuzzy net in [image: image484.png]


 where [image: image485.png](D, =)



 is a directed set such that [image: image486.png]


 . Then for every [image: image487.png]


There exists [image: image488.png]m € D



 such that [image: image489.png]X,

2

9B



 for all [image: image490.png]


 . Since [image: image491.png]€A



 , then by proposition ( 2.9 ) , [image: image492.png]X,

2

qA°



. Thus [image: image493.png]AqB



 . Therefore [image: image494.png]


 .

Proposition 2.39.   If [image: image495.png]


 is a fuzzy [image: image496.png]


 space , then every convergent fuzzy net in [image: image497.png]


 has a unique limit point .
 Proof :       
[image: image498.png]


  Let [image: image499.png]


 be a fuzzy net on [image: image500.png]


 such that [image: image501.png]


, [image: image502.png]Xz, — Vg



 and [image: image503.png]X #y



 . Since [image: image504.png]


 , we have [image: image505.png]VAEN 3 mED,



 such that [image: image506.png]X,

2

qA



 , [image: image507.png]


 . Also , [image: image508.png]Xz, — Vg



 , we have [image: image509.png]¥ BEN] ,3 my€D



 [image: image510.png]


 such that [image: image511.png]X,

2

9B



 , [image: image512.png]


 . Since  [image: image513.png]


 is a directed set , then there exists [image: image514.png]m € D



 , such that [image: image515.png]


 and [image: image516.png]


then [image: image517.png]xz, A(AAB), Vnz=m



 . Thus [image: image518.png]AAB # 0



 . This complete the proof .

[image: image519.png]


  Let [image: image520.png]


 be a not fuzzy [image: image521.png]


 space , then there exists [image: image522.png]Xq,¥p € FP(X)



 such that [image: image523.png]X #y



 and [image: image524.png]AAB # 0



 , [image: image525.png]VAEN? ,BE N;,



. Put [image: image526.png]me ={AAB/AEN? ,BE Ng‘}



. Thus [image: image527.png]VD EN?




 , there exists [image: image528.png]xpqD



 , then [image: image529.png]Ceol ey



 is a fuzzy net in [image: image530.png]


 .To prove that [image: image531.png]Xp — X,



 and [image: image532.png]xXp =Yg



 . Let [image: image533.png]


 , then [image: image534.png]Fag



  ( since [image: image535.png]E=EAX#0)



 . Thus [image: image536.png]xpqE VD = E



 , thus [image: image537.png]Xp — X,



 . Also [image: image538.png]Xp =Yg



 , so [image: image539.png]Ceol ey



 has two limit point .

3. Fuzzy compact space 

      This section contains the definitions , proportions and theorems about fuzzy compact space and we give a new results .

Definition 3.1.   A family [image: image540.png]


 of fuzzy sets is called a cover of a fuzzy set [image: image541.png]


 if and only if [image: image542.png]A <V(B;:B; EA}



 and [image: image543.png]


  is called fuzzy open cover if each member [image: image544.png]


is a fuzzy open  set . A sub cover of [image: image545.png]


is a subfamily of [image: image546.png]


 which is also a cover of [image: image547.png]


 . 

Definition 3.2.   Let [image: image548.png](x,7)



 be a fuzzy topological space and let [image: image549.png]Aer®



. Then  [image: image550.png]


 is said to be a fuzzy compact set if for every fuzzy open cover of [image: image551.png]


 has a finite sub cover of [image: image552.png]


 . Let [image: image553.png]


 , then [image: image554.png]


 is called a fuzzy compact space that is  [image: image555.png]€T



 for every [image: image556.png]


 and  [image: image557.png]


 , then there  are finitely many indices [image: image558.png]


 such that [image: image559.png]


 .
Example  3.3.    
 If [image: image560.png](x,7)



 is a fuzzy topological space such that [image: image561.png]


 is finite then [image: image562.png]


 is fuzzy compact .

Remark 3.4  Not every fuzzy point of a fuzzy space [image: image563.png]


 is fuzzy compact in general . See the following example : 

Example 3.5 Let [image: image564.png]


 be a set and [image: image565.png]T={0x1zpaz_ =/



 [image: image566.png]nez®
m=3



 } ,  where [image: image567.png]a €X



 be a fuzzy topology on [image: image568.png]


 .

     Notice that [image: image569.png]


is a { [image: image570.png]az_: [nz3]



fuzzy open cover of [image: image571.png]


 , but its has no finite sub cover for [image: image572.png]


  . Thus [image: image573.png]


  is not fuzzy compact . 

     Then  we will give the following definition .  
Definition  3.6  A fuzzy topological space [image: image574.png](x,7)



 is called fuzzy singleton compact space ( fuzzy sc – space ) if every fuzzy point of  [image: image575.png]


 is fuzzy compact .

Example   Every fuzzy topological space with finite fuzzy topology is fuzzy sc – space .
Proposition 3.7     Let [image: image576.png]


 be a fuzzy subspace of a fuzzy topological space [image: image577.png]


 and  let [image: image578.png]AEl”



. Then  [image: image579.png]


 is  fuzzy compact relative to [image: image580.png]


 if and only if  [image: image581.png]


 is fuzzy compact relative to [image: image582.png]


 .

Proof  [image: image583.png]


  Let [image: image584.png]


 be a fuzzy compact relative to [image: image585.png]


 and let [image: image586.png]{Vi: A €A}



 be a collection of fuzzy open sets relative to [image: image587.png]


 , which covers [image: image588.png]


 so that [image: image589.png]A=V;enV;



 , then there exist [image: image590.png]


 fuzzy open relative to [image: image591.png]


 , such that [image: image592.png]V, =YAG,



 for any [image: image593.png]ALEA



 . It then follows that [image: image594.png]A <V;en Gy



 . So that [image: image595.png]{Gy:A € A}



 is fuzzy open cover of [image: image596.png]


 relative to [image: image597.png]


 . Since [image: image598.png]


 is fuzzy compact relative to [image: image599.png]


 , then there exists a finitely many indices [image: image600.png]


 such that [image: image601.png]AV, Gy



 . since [image: image602.png]


 , we have [image: image603.png]A=YAASYA(G, VG V..VG, L(YAG,)




 , since [image: image604.png]


 we obtain [image: image605.png]AV, Vy



 . Thus show that [image: image606.png]


 is fuzzy compact relative to [image: image607.png]


 . 

[image: image608.png]


Let [image: image609.png]


 be fuzzy compact relative to [image: image610.png]


 and let [image: image611.png]{Gy:A € A}



 be a collection of fuzzy open  cover of  [image: image612.png]


 , so that [image: image613.png]A <V;en Gy



 . Since [image: image614.png]


 , we have [image: image615.png]A=YANASYA(V;e0G) =



 [image: image616.png]Viea(Y A G)



 . Since [image: image617.png]Y AG,



 is fuzzy open relative to [image: image618.png]


 , then the collection [image: image619.png]{Y AG: A EA]}



 is a fuzzy open cover relative to [image: image620.png]


 . Since [image: image621.png]


 is fuzzy compact relative to [image: image622.png]


 , we must have [image: image623.png]A<(YAG,)V(YAG,)V.V(YAG, )



 ……(*) for some choice of finitely many indices [image: image624.png]


 . But (*) implies that [image: image625.png]AV, Gy



 . It follows that [image: image626.png]


 is fuzzy compact relative to [image: image627.png]


 .

Theorem 3.8     A fuzzy topological space [image: image628.png](x,7)



 is fuzzy compact if and only if for every collection [image: image629.png]{(4:7€]}



 of fuzzy closed sets of [image: image630.png]


 having the finite intersection property , [image: image631.png]Ajer A; # Oy



 .

Proof  [image: image632.png]


 Let [image: image633.png]{(4:7€]}



 be a collection of fuzzy closed sets of [image: image634.png]


 with the finite intersection property . Suppose that  [image: image635.png]Ajer A; # Oy



 , then [image: image636.png]


 . Since [image: image637.png]


 is fuzzy compact , then there exists [image: image638.png]o2 -



 such that [image: image639.png]


 .Then [image: image640.png]


. Which gives a contradiction and therefore [image: image641.png]Ajer A; # Oy



 .

[image: image642.png]


 let [image: image643.png]{(4:7€]}



 be a fuzzy open cover of [image: image644.png]


 . Suppose that for every finite [image: image645.png]o2 -



 , we have [image: image646.png]Visi 4, # 1,



 . then [image: image647.png]14, # Oy



 . Hence [image: image648.png](4,57}



  satisfies the finite intersection property . Then from the hypothesis we have [image: image649.png]Njey A;° # 0y



. Which implies [image: image650.png]


 and this contradicting that  [image: image651.png]{(4:7€]}



 is a fuzzy open cover of [image: image652.png]


 . Thus [image: image653.png]


 is fuzzy compact . 

Theorem 3.9.   A fuzzy closed subset of a fuzzy compact space is fuzzy compact .
 Proof :  Let [image: image654.png]


 be a fuzzy closed subset of a fuzzy space [image: image655.png]


 and let [image: image656.png](B;: i€}



 be any family of fuzzy closed in [image: image657.png]


 with finite intersection property , since [image: image658.png]


 is fuzzy closed in [image: image659.png]


 , then by proposition ( 2. 16 . ii ) , [image: image660.png]


 are also fuzzy closed in [image: image661.png]


 ,  since [image: image662.png]


 is fuzzy compact , then by proposition ( 3 . 8 ) ,  [image: image663.png]Aier B; # 0y



 . Therefore [image: image664.png]


 is fuzzy compact .   
Theorem 3.10.    A fuzzy topological space [image: image665.png](x,7)



 is a fuzzy compact if and only if every fuzzy filter base on [image: image666.png]


 has a fuzzy cluster point .
Proof   [image: image667.png]


 Let [image: image668.png]


 be fuzzy compact and let [image: image669.png]={F:a €A}



 be a fuzzy filter base on [image: image670.png]


 having no a fuzzy cluster point . Let [image: image671.png]x € X



 . Corresponding to each [image: image672.png]n€N



 ([image: image673.png]


 denoted the set of natural numbers ), there exists a fuzzy q-neighbourhood [image: image674.png]


 of the fuzzy point [image: image675.png]


 and an  [image: image676.png]F'EF



such that [image: image677.png]


 . Since [image: image678.png]<UZ(x)




 , we have [image: image679.png]Uy (x)=1



 , where [image: image680.png]


. Thus [image: image681.png]U={U;:n€EN,x €X]



 is a fuzzy open cover of [image: image682.png]


 . Since [image: image683.png]


 is fuzzy  compact , then there exists finitely many members [image: image684.png]


 of [image: image685.png]


 such that [image: image686.png]VE
oy




 . Since [image: image687.png]


 is fuzzy filter base , then there exists [image: image688.png]FEF



 such that [image: image689.png]


 . But [image: image690.png]


  , then [image: image691.png]Fq 1y



 . Consequently , [image: image692.png]


 and this contradicts the definition of a fuzzy filter base .

[image: image693.png]


  Let [image: image694.png]={F,:a€A)



 be a family of fuzzy closed sets having finite intersection property .Then the set of finite intersections of members of [image: image695.png]


 forms a fuzzy filter base [image: image696.png]


 on [image: image697.png]


 . So by the condition [image: image698.png]


 has a fuzzy cluster point say [image: image699.png]


 . Thus [image: image700.png]


  . So [image: image701.png]X, € Noen Fa

=Naer



 . Thus [image: image702.png]A(F,F € F}# 0y



 . Hence by theorem  ( 3 . 8 )  ,  [image: image703.png]


 is fuzzy compact . 

Theorem 3.11.  A fuzzy topological space [image: image704.png](x,7)



 is fuzzy compact if and only if every fuzzy net in [image: image705.png]


 has a cluster point .
 Proof   [image: image706.png]


  Let [image: image707.png]


 be fuzzy compact . Let [image: image708.png]{S(n) :n € D}



 be a fuzzy net in [image: image709.png]


 which has no cluster point , then for each fuzzy point [image: image710.png]


 , there is a fuzzy q – neighbourhood [image: image711.png]


 of [image: image712.png]


 and an [image: image713.png]ny,, €D



 such that [image: image714.png]Smd



 for all [image: image715.png]m € D



 with [image: image716.png]m=mny,



 . Since [image: image717.png]U,



 , then [image: image718.png]Spn %0



 , [image: image719.png]vmzmny



 .  Let [image: image720.png]


 denoted the collection of all [image: image721.png]


 , where [image: image722.png]


 runs over all fuzzy points in[image: image723.png]


 . Now to prove that the collection [image: image724.png]


 is a family of fuzzy closed sets in [image: image725.png]


 possessing finite intersection property . First notice that there exists [image: image726.png]


 such that  [image: image727.png]5,4

U,

g



 for [image: image728.png]


1,2,….., m  and for all [image: image729.png]


  [image: image730.png](p€D)



 , i.e. [image: image731.png]


 for all [image: image732.png]


  . Hence [image: image733.png]


 . Since [image: image734.png]


 is  fuzzy  compact , by theorem   ( 3 . 5)  , there exists a fuzzy point [image: image735.png]g



in [image: image736.png]


 such that [image: image737.png]yp €M1z~

x—V{U, : U, €U}



 . Thus [image: image738.png]g €1x — Uy,



 , for all [image: image739.png]


 [image: image740.png]


 and hence  in particular , [image: image741.png]1 —
€
e

U,

&



 , i.e., [image: image742.png]veq Uy,



 . But by construction , for each fuzzy point [image: image743.png]


 , there exists [image: image744.png]€U



 Such that [image: image745.png]U,



 , and we arrive at a contradiction .
· To prove that converse by theorem ( 3 . 10 ) , that every fuzzy filter base on [image: image746.png]


 has a cluster point .  Let [image: image747.png]


 be a fuzzy filter base on [image: image748.png]


 . Then each [image: image749.png]FEF



 is non empty set , we choose a fuzzy point [image: image750.png]xp EF



 . Let [image: image751.png]S={xz:F EF)}



 and let a relation [image: image752.png]


 be defined in [image: image753.png]


 as follows [image: image754.png]


 if and only if [image: image755.png]


 in [image: image756.png]


, for [image: image757.png]FuFp €F



 . Then [image: image758.png](F.=)



 is directed set . Now [image: image759.png]


 is a fuzzy net with the directed set [image: image760.png](F.=)



. By hypothesis the fuzzy net [image: image761.png]


 has a cluster point [image: image762.png]


 . Then for every fuzzy q – neighourhood [image: image763.png]


 of [image: image764.png]


 and for each [image: image765.png]FEF



, there exists [image: image766.png]GEF



with [image: image767.png]


 such that [image: image768.png]X qW



 . As [image: image769.png]


 . It follows that [image: image770.png]FqWw



 for each [image: image771.png]FEF



 , then by proposition 
·    ( 2 . 19) , [image: image772.png]


  .  Hence [image: image773.png]


is a cluster point of [image: image774.png]


. 

Corollary  3.12.   A fuzzy topological space [image: image775.png](x,7)



 is fuzzy compact if and only if every fuzzy net in [image: image776.png]


 has a convergent fuzzy subnet .
Proof :   By proposition ( 2.37 ) , and theorem ( 3.11 ) .
Theorem 3.13.   Every fuzzy compact subset of a fuzzy Hausdroff topological space is fuzzy closed .
 Proof : Let [image: image777.png]


 , then by theorem ( 2. 34 ) , there exists fuzzy net [image: image778.png]


 such that [image: image779.png]


 . Since [image: image780.png]


 is fuzzy compact and [image: image781.png]


 is fuzzy [image: image782.png]


 space , then by corollary    ( 3. 12) and proposition ( 2 .39 ) , we have  [image: image783.png]€A



 . Hence [image: image784.png]


 is fuzzy closed set .
Theorem  3.14.   In any fuzzy space , the intersection of a fuzzy compact set with a fuzzy closed set is fuzzy compact .
Proof   Let [image: image785.png]


 be a fuzzy compact set and [image: image786.png]


 be a fuzzy closed set . To prove that [image: image787.png]AAB



 is a fuzzy compact set . Let [image: image788.png]


 be a  fuzzy net in [image: image789.png]AAB



 . Then [image: image790.png]


 is fuzzy net in [image: image791.png]


 , since [image: image792.png]


 is fuzzy compact , then by corollary ( 3.12 ) , [image: image793.png]


 for some [image: image794.png]x, € FP(X)



 and by proposition ( 2.38 ) , [image: image795.png]


 . since [image: image796.png]


 is fuzzy closed , then [image: image797.png]€B



 . Hence [image: image798.png]x, EANB



 and [image: image799.png]


 . Thus [image: image800.png]AAB



 is fuzzy compact .

Proposition 3.15  Let [image: image801.png]


 and [image: image802.png]


 be fuzzy spaces and [image: image803.png]


 be a fuzzy continuous mapping . If [image: image804.png]


 is a fuzzy compact set in [image: image805.png]


 , then [image: image806.png]f(U)



 is a fuzzy compact set in [image: image807.png]


 . 

Proof :   Let [image: image808.png]


 be a fuzzy open cover of [image: image809.png]f(U)



 in [image: image810.png]


, i.e., [image: image811.png](f(v)



 [image: image812.png]=Vie G;



)  . Since [image: image813.png]


 is a fuzzy continuous , then [image: image814.png]f(
G;)



 is a fuzzy open set in [image: image815.png]


 , [image: image816.png]Vi€l



 . Hence  the collection [image: image817.png]{fF (e
G;)



 :[image: image818.png]i€}



 be a fuzzy open cover of [image: image819.png]


 in [image: image820.png]


 ,i.e., [image: image821.png]U< fHf(0) = F (Vi G)



=[image: image822.png]Vie: f1(G))



 . Since [image: image823.png]


 is a fuzzy compact set in[image: image824.png]


 , then there exists finitely many indices [image: image825.png]


 Such that [image: image826.png]


, so that[image: image827.png]FU) = F(Vi=a(F (63

Vima(FF(6:))) = Viaa 6y



.Hence[image: image828.png]f)



 is a fuzzy compact . 
4. Compactly fuzzy closed set .

     The section will contain the definition of compactly fuzzy closed set and we give new results .

Definition 4.1.  Let [image: image829.png]


be a fuzzy space . Then a fuzzy subset[image: image830.png]


 of[image: image831.png]


 is called 

compactly  fuzzy closed set if  [image: image832.png]WAK



is fuzzy compact , for every fuzzy compact set[image: image833.png]


 in[image: image834.png]


. 

Example 4.2.  Every fuzzy subset of indiscrete fuzzy topological space is compactly 

fuzzy closed set .

Proposition 4.3.   Every fuzzy closed subset of a fuzzy space [image: image835.png]


 is compactly fuzzy   closed 

Proof  Let [image: image836.png]


 be a fuzzy closed subset of a fuzzy space [image: image837.png]


 and let [image: image838.png]


 be a fuzzy compact set . Then by theorem  ( 3.14 )  , [image: image839.png]ANK



 is a fuzzy compact . Thus [image: image840.png]


 is a compactly fuzzy closed set .

     The converse of proposition ( 4.3 ) , is not true in general as the following example show :

Example 4.4. Let [image: image841.png]


 be a set and [image: image842.png]


 be the indiscrete fuzzy space on [image: image843.png]


 . Notice that [image: image844.png]={0.2,0.3}



 is compactly fuzzy closed set , but its not fuzzy closed set. 
Theorem 4.5.  Let [image: image845.png]


 be a fuzzy [image: image846.png]


 space . A fuzzy subset [image: image847.png]


 of [image: image848.png]


 is compactly fuzzy closed if and only if [image: image849.png]


 is fuzzy closed .

Proof  [image: image850.png]


 Let [image: image851.png]


 be a compactly fuzzy closed set in [image: image852.png]


 and [image: image853.png]


 . Then by proposition ( 2.34 ) , there exists a fuzzy net [image: image854.png]


  in [image: image855.png]


 , such that [image: image856.png]


 ,  then by corollary ( 3.12 ) , [image: image857.png]


 is a fuzzy compact set . Since [image: image858.png]


 is compactly fuzzy closed , then [image: image859.png]AAF



 is a fuzzy compact set . But  [image: image860.png]


 is a fuzzy [image: image861.png]


 space , then by theorem ( 3.13 ) , [image: image862.png]AAF



 is  fuzzy closed . Since [image: image863.png]


 and [image: image864.png]Xz, EANF



  , then by proposition ( 2.38 )  , [image: image865.png]x, € AANF



 so   [image: image866.png]€A



 . Hence [image: image867.png]In



  . Therefore [image: image868.png]


 is a fuzzy closed set .
[image: image869.png]


  By proposition ( 4.3 ) .  
5. Fuzzy compact mapping.

     The section will contain the concept of fuzzy compact mapping and we give new results . 

Definition 5.1.   Let [image: image870.png]


 and [image: image871.png]


 be fuzzy spaces. A mapping [image: image872.png]


 is called a fuzzy compact mapping if the inverse image of each fuzzy compact set in [image: image873.png]


 , is a fuzzy compact set in [image: image874.png]


 .
Example 5.2.  Let [image: image875.png](x,7)



 and [image: image876.png](Y,7)



 be fuzzy topological spaces , such that [image: image877.png]


 is a finite fuzzy topology , then the mapping [image: image878.png]


is fuzzy  compact .
Proposition 5.3.   Let [image: image879.png]XY



 and [image: image880.png]


 be fuzzy spaces , If [image: image881.png]


 , [image: image882.png]


are fuzzy continuous mapping . Then :- 
[image: image883.png](i)



If [image: image884.png]


 and [image: image885.png]


 are a fuzzy compact mappings , then [image: image886.png]


 is a fuzzy compact mapping 

[image: image887.png](if)



 If [image: image888.png]


 is a fuzzy compact mapping , [image: image889.png]


 is onto , then [image: image890.png]


 is a fuzzy  compact mapping .

[image: image891.png](iii)



 If [image: image892.png]


 is a fuzzy compact mapping , [image: image893.png]


 is one to one , then [image: image894.png]


 is a  fuzzy compact mapping . 

Proof :  [image: image895.png](i)



 Let [image: image896.png]


 be a fuzzy compact set in [image: image897.png]


 . Since [image: image898.png]


 is fuzzy compact mapping , then [image: image899.png]g~ (1
D)



 is a fuzzy compact set in [image: image900.png]


 . Since [image: image901.png]


 is a fuzzy compact mapping , then [image: image902.png]f(g7*(D))



 is a fuzzy compact set in [image: image903.png]


 . Hence  [image: image904.png]


 is a fuzzy compact mapping .

[image: image905.png](if)



Let [image: image906.png]


 be a fuzzy compact set in [image: image907.png]


 , then [image: image908.png](g ) (D)



 is a fuzzy compact set in [image: image909.png]


 , and so [image: image910.png]flg=f)(D)



 is a fuzzy compact set in [image: image911.png]


 . Now , since [image: image912.png]


 is onto , then [image: image913.png]flgof)~
(D) =g""(D)



 , therefore [image: image914.png]


 is a fuzzy compact mapping .

[image: image915.png](iii)



 Let [image: image916.png]


be a fuzzy compact set in [image: image917.png]


. Since [image: image918.png]


 is a fuzzy continuous mapping , then [image: image919.png]g(D)



 be a fuzzy compact set in [image: image920.png]


. Since [image: image921.png]


 is a fuzzy compact mapping , then [image: image922.png](g° )" (g(D))



 is a fuzzy compact set in [image: image923.png]


. Since [image: image924.png]


 is one to one , then [image: image925.png](g N g (D) =F(D)



 . Hence  [image: image926.png]f(
D)



 is a fuzzy compact set in [image: image927.png]


. Then [image: image928.png]


 is a fuzzy compact mapping .

Proposition 5.4.   For any fuzzy closed subset [image: image929.png]


 of a fuzzy space [image: image930.png]


, the inclusion [image: image931.png]ip:F — X



 is a fuzzy compact mapping . 
Proof :   Let [image: image932.png]


 be a fuzzy compact set in [image: image933.png]


 , then by theorem ( 3.14 ) , [image: image934.png]FAK



 is a fuzzy compact set in [image: image935.png]


 . But [image: image936.png]


 , then [image: image937.png]ir'(K)



  is a fuzzy compact set in [image: image938.png]


 , therefore the inclusion mapping [image: image939.png]ip:F — X



 is fuzzy compact .
Proposition 5.5.   Let [image: image940.png]


 and[image: image941.png]


 be fuzzy space , and [image: image942.png]f:X— Y



 be a fuzzy compact mapping  . If [image: image943.png]


 is fuzzy closed subset of [image: image944.png]


 , then [image: image945.png]fig F =Y



 is fuzzy compact mapping .
Proof :  Since [image: image946.png]


 is a fuzzy closed subset of [image: image947.png]


 , then by proposition ( 5.4 ) , the inclusion [image: image948.png]ip:F — X



 is a fuzzy compact mapping . But [image: image949.png]


 , then by proposition (  6.3 i ) , [image: image950.png]


 is fuzzy compact mapping .
6. Fuzzy Coercive Mapping .

     The section will contain the definition of a fuzzy coercive mapping  and the relation between fuzzy compact mapping and the fuzzy coercive mapping .

Definition 6.1.  Let [image: image951.png]


and [image: image952.png]


 be fuzzy space . A mapping [image: image953.png]


 is called a fuzzy coercive if for every fuzzy compact set [image: image954.png]


 , there exists a fuzzy compact set [image: image955.png]


 such that [image: image956.png]f(1:\K) = (1,\6)



 . 
Example 6.2.   If [image: image957.png]


 is a fuzzy compact space , then the mapping [image: image958.png]


 is  fuzzy coercive . 
Solution :  Let [image: image959.png]


 be a fuzzy compact set in [image: image960.png]


 . Since [image: image961.png]


 is fuzzy compact space and [image: image962.png]f(1:\1;) = f(0;) = 04 < (1,\G)



 , then [image: image963.png]


 is fuzzy coercive mapping . 
Proposition 6.3.   Every fuzzy compact mapping is a fuzzy coercive mapping . 
Proof  Let [image: image964.png]


 be a fuzzy compact mapping . To prove that [image: image965.png]


 is a fuzzy coercive . Let [image: image966.png]


 be a fuzzy compact set in [image: image967.png]


 . Since [image: image968.png]


 is a fuzzy compact mapping , then [image: image969.png]f(
G)



 is a fuzzy compact set in [image: image970.png]


. Thus [image: image971.png]fF(1x\f71(6)) < (1,\G)



. Hence  [image: image972.png]


 is a fuzzy coercive mapping. 
     The converse of proposition ( 6.3 ) , is not true in general as the following example shows :

 Example 6.4 Let [image: image973.png]={a}, Y ={b}



 be sets and [image: image974.png]T={0x1zpaz_ =/



 [image: image975.png]nez®
m=3



 } , [image: image976.png]={0x, 15 ,b /n€Z7}



 be fuzzy topology on [image: image977.png]


 and [image: image978.png]


 respectively . 
     Let [image: image979.png]


 be a mapping which is defined by : [image: image980.png]f(a)=b



 . Notice that [image: image981.png]


 is a fuzzy coercive mapping , but its not fuzzy compact mapping .
Proposition 6.5.   Let  [image: image982.png]


 and [image: image983.png]


 be fuzzy spaces such that [image: image984.png]


 is a fuzzy [image: image985.png]


 - space , and[image: image986.png]f:X—>Y



 is a fuzzy continuous mapping . Then [image: image987.png]


 is a fuzzy  coercive if and only if [image: image988.png]


 is a fuzzy compact mapping .

Proof  [image: image989.png]


 Let [image: image990.png]


 is a fuzzy compact set in[image: image991.png]


 . To prove that [image: image992.png]f(
G)



 is a fuzzy compact set in [image: image993.png]


 . Since [image: image994.png]


  a fuzzy [image: image995.png]


 – space and [image: image996.png]


 is a fuzzy continuous mapping , then [image: image997.png]f(
G)



 is a fuzzy closed set in [image: image998.png]


 . Since [image: image999.png]


 is a fuzzy coercive mapping , then there exists a fuzzy compact set [image: image1000.png]


 in [image: image1001.png]


 , such that [image: image1002.png]f(1:\K) = (1,\6)



 . Then [image: image1003.png]f(K°) =G°



, therefore [image: image1004.png]f(
G) <K



 , thus [image: image1005.png]f(
G)



 is a fuzzy compact set in [image: image1006.png]


 . Hence [image: image1007.png]


 is a fuzzy compact mapping .
[image: image1008.png]& By proposition (6.3).




Proposition 6.6.   Let [image: image1009.png]X,Y



 and [image: image1010.png]


 be fuzzy spaces . If [image: image1011.png]


 , [image: image1012.png]


 are fuzzy  coercive mapping  , then [image: image1013.png]gef:X —zZ



 is a fuzzy coercive mapping .
  Proof : Let [image: image1014.png]


 be a fuzzy compact set in [image: image1015.png]


 . Since [image: image1016.png]


 is a fuzzy coercive mapping  , then there exists a fuzzy compact set  [image: image1017.png]


 in[image: image1018.png]


 ,  such that[image: image1019.png]9(1,\K) = 1;\6)



 . Since [image: image1020.png]


 is a fuzzy coercive mapping and [image: image1021.png]


is a fuzzy compact set in [image: image1022.png]


 , then there exists a fuzzy compact set [image: image1023.png]


 in [image: image1024.png]


 such that [image: image1025.png]F\H) < (1,\K) = g(f (1:\H)) < g(1,\K) < (1,\6) = (g° I(1:\H) <
(1,\6)



. Hence[image: image1026.png]


 [image: image1027.png]


 is fuzzy coercive mapping . 
Corollary 6.7.  Let  [image: image1028.png]X,Y



and [image: image1029.png]


 be fuzzy spaces , such that [image: image1030.png]


 is a fuzzy compact mapping and [image: image1031.png]


 is a fuzzy coercive napping . Then [image: image1032.png]gef:X —zZ



 is a fuzzy coercive mapping . 
Proposition 6.8.  Let [image: image1033.png]


 and[image: image1034.png]


 be fuzzy space and [image: image1035.png]


 be a fuzzy coercive mapping . If [image: image1036.png]


 is a fuzzy closed subset of [image: image1037.png]


 , then the restriction mapping [image: image1038.png]fig F =Y



 is a fuzzy coercive mapping .
Proof :  Since [image: image1039.png]


 is a fuzzy closed subset of [image: image1040.png]


 , then by proposition  ( 5.4 ) , and proposition ( 6.3 ) , the inclusion mapping [image: image1041.png]ip:F — X



 is a fuzzy coercive mapping . But [image: image1042.png]


 , then by proposition ( 6.6 ) , is a fuzzy coercive mapping .
7. Fuzzy proper mapping .

     The section will contain the definition of fuzzy proper mapping and addition to studying relation among fuzzy proper mapping , fuzzy compact mapping and fuzzy coercive mapping . 

Definition 7.1  A fuzzy continuous mapping [image: image1043.png]


 is called fuzzy proper  if 
[image: image1044.png]O]



 [image: image1045.png]


 is fuzzy closed .

[image: image1046.png]


 [image: image1047.png]fH (D



 is fuzzy compact , for all [image: image1048.png]Ve € FP(Y)



 .

Example 7.2   Let [image: image1049.png]


 be set and [image: image1050.png]


 is indiscrete fuzzy topology on [image: image1051.png]


 and  [image: image1052.png]f:(X,T) — (X,T)



 be the indentity mapping . Notice that [image: image1053.png]


 is fuzzy proper mapping .  
Proposition  7.3  Let [image: image1054.png]XY



 and [image: image1055.png]


 be fuzzy spaces . If [image: image1056.png]


 and [image: image1057.png]


 are fuzzy proper mappings , then [image: image1058.png]gef:X —zZ



 is fuzzy proper mapping .
Proof :   By proposition ( 2.22  )  , [image: image1059.png]


 is fuzzy continuous .
[image: image1060.png]O]



 Since [image: image1061.png]


 an [image: image1062.png]


 are  fuzzy proper mapping , then [image: image1063.png]


and [image: image1064.png]


 are fuzzy closed . 

Thus by proposition ( 2.26 ) ,  [image: image1065.png]gef:X—Z



 is a fuzzy closed mapping . 

[image: image1066.png]


 Let [image: image1067.png]z, € FP(Z)



 , then [image: image1068.png]g7 (7))



 is fuzzy compact set in [image: image1069.png]


, and then [image: image1070.png]fH a7 () )= (g )7 (D)



 is a fuzzy compact set in [image: image1071.png]


 . Therefore by [image: image1072.png]O]



 and [image: image1073.png]


  ,  [image: image1074.png]


 is fuzzy proper mapping 

Proposition 7.4.   Let [image: image1075.png]XY



 and [image: image1076.png]


 be fuzzy space . If [image: image1077.png]


 and [image: image1078.png]


 are fuzzy continuous  mappings , such that [image: image1079.png]gef:X —zZ



 is a fuzzy proper mapping .  If [image: image1080.png]


 is onto , then [image: image1081.png]


 is  fuzzy proper .

Proof [image: image1082.png](i)



 Let [image: image1083.png]


 be a fuzzy closed subset of [image: image1084.png]


 , since [image: image1085.png]


 is a fuzzy continuous , then [image: image1086.png]fH(F)



 is fuzzy closed in [image: image1087.png]


 . Since [image: image1088.png]


 is a fuzzy proper mapping , then  [image: image1089.png](g HFH(F))



 is fuzzy closed in [image: image1090.png]


 . But   [image: image1091.png]


   is onto  , then [image: image1092.png](g (F))=9g(F)



 . Hence [image: image1093.png]g(F)



 is a fuzzy closed in [image: image1094.png]


 .Thus  [image: image1095.png]


 is fuzzy closed mapping .[image: image1096.png]



[image: image1097.png]


 Let [image: image1098.png]Z, € FP(Z)



 . Since [image: image1099.png]


 is a fuzzy proper mapping , then [image: image1100.png](g N7 {zd) = F o7 ({z.])



 is fuzzy compact . Since  [image: image1101.png]


 is fuzzy continuous , then [image: image1102.png](g7 {zd))



is fuzzy compact set ,  but [image: image1103.png]


 is   onto . Then [image: image1104.png]fF(F (o7 ({zD) ) = 97 ({z.D)



 is fuzzy compact , for every fuzzy point [image: image1105.png]


 in [image: image1106.png]


 . Thus [image: image1107.png]


 is fuzzy proper .

Proposition 7.5. Let [image: image1108.png]XY



 and [image: image1109.png]


 be fuzzy space and [image: image1110.png]


 , [image: image1111.png]


 be fuzzy continuous  mappings , such that [image: image1112.png]gef:X —zZ



 is a fuzzy proper mapping .  If [image: image1113.png]


 is one to one , then [image: image1114.png]


 is a fuzzy proper .

Proof  [image: image1115.png](1)



 Let [image: image1116.png]


 be a fuzzy closed subset of [image: image1117.png]


 . Then [image: image1118.png](g f)(F)



 is a fuzzy closed set in [image: image1119.png]


 . Since [image: image1120.png]


 is a one to one , fuzzy continuous , mapping , then [image: image1121.png]g7 (a(f(F)) = £(F)



 is fuzzy closed in [image: image1122.png]


. Hence [image: image1123.png]


 is fuzzy   closed .
[image: image1124.png](if)



 Let [image: image1125.png]Ve € FP(Y)



 , then [image: image1126.png]g(v.) €Z



  .  Now ,  since   [image: image1127.png]gef:X —zZ



 is fuzzy proper and [image: image1128.png]


 is a one to one , then the set [image: image1129.png](9° N7 0D =7 (67 (9(0aD)) = F (LD



is fuzzy compact , for  every fuzzy point [image: image1130.png]Ve



 in [image: image1131.png]


 , therefore the mapping [image: image1132.png]


 is fuzzy proper .

Proposition 7.6.  Let [image: image1133.png]


and [image: image1134.png]


 be fuzzy spaces , and [image: image1135.png]


 be fuzzy proper mapping . If [image: image1136.png]


 is any fuzzy clopen subset of  [image: image1137.png]


 , then [image: image1138.png]


 is a fuzzy proper mapping . 

Proof : To prove that [image: image1139.png]


 is a fuzzy continuous mapping . Let [image: image1140.png]


 be a fuzzy open subset of  [image: image1141.png]


 , then [image: image1142.png]K=AAB



,  for some fuzzy open set[image: image1143.png]


 in [image: image1144.png]


. Since  [image: image1145.png]


 is a fuzzy continuous mapping , then by proposition (2.22) ,  [image: image1146.png]fi frA) -4

)



 is a fuzzy continuous mapping , then [image: image1147.png]()




 is a fuzzy open set in [image: image1148.png]f(
A)



 , but [image: image1149.png]fa(K) =fH(A)A



 [image: image1150.png]®)

1
=24y



 , thus [image: image1151.png]fa'(K)



 is a fuzzy open set in [image: image1152.png]f(
A)



 . Hence [image: image1153.png]


is a fuzzy continuous  mapping .
[image: image1154.png]O]



 By proposition ( 2.28 ) , [image: image1155.png]fr



 is fuzzy closed . 

[image: image1156.png]


 Let [image: image1157.png]t, € FP(A)



 . Since [image: image1158.png]


 is fuzzy proper , then [image: image1159.png]fH({t])



 is fuzzy compact in [image: image1160.png]


 , since [image: image1161.png]


 is fuzzy closed and [image: image1162.png]


 is fuzzy continuous , then [image: image1163.png]f7(4)



 is fuzzy closed set in [image: image1164.png]


 . Thus by theorem  ( 3.14 ) , [image: image1165.png]f
(4]
DA ({
t.})



 is fuzzy compact . But [image: image1166.png]f
({t,
) =
=f"
HAAS
~H({t.
=)



 is a fuzzy compact set in [image: image1167.png]f7(4)



  . Therefore [image: image1168.png]fa



 is fuzzy proper . 

Proposition 7.7.  Let [image: image1169.png]


 and [image: image1170.png]


 be fuzzy spaces . If  [image: image1171.png]f:X— Y



 is a fuzzy proper mapping , then [image: image1172.png]


 is a fuzzy compact mapping .
Proof   Let [image: image1173.png]


 be a fuzzy compact subset of [image: image1174.png]


 and let [image: image1175.png]{Updaea



  be a fuzzy open cover  of [image: image1176.png]fHK)



  .  Since [image: image1177.png]


 is a fuzzy proper mapping  , then  [image: image1178.png]fH({ke})



 is a fuzzy compact set  ,  [image: image1179.png]V k, €K



 .  But  [image: image1180.png]f
({k,
(o)) =
(K =
=V,
/2ea Us
A



  , 
thus there exists  [image: image1181.png]


  , such that  [image: image1182.png]FH
({k,
2}) = V3E
s Up



 , let [image: image1183.png]


 . Thus , for all [image: image1184.png]EK



 , there exists [image: image1185.png]


 such that [image: image1186.png]f(k,
e) U,
-



 , then [image: image1187.png]ke < f(U,,)



 . Notice that for all [image: image1188.png]EK



 , [image: image1189.png]ke < (10\F(12\0,,)) =



 [image: image1190.png]K < Viger (1\F(12\0,,))



 , but the sets [image: image1191.png](1\F(1:\D,,)



 are fuzzy open . Hence there exists [image: image1192.png]


 , such that  [image: image1193.png]K < Vie (1\F(12\0,,)) —



 [image: image1194.png]FHK
) < V5




 . Therefore [image: image1195.png]fHK)



 is a fuzzy compact set in [image: image1196.png]


 . Hence the mapping [image: image1197.png]


 is a fuzzy compact mapping.  

Proposition 7.8   Let [image: image1198.png]


 and [image: image1199.png]


 be fuzzy spaces  , such that [image: image1200.png]


 is a fuzzy [image: image1201.png]


 space and fuzzy sc - space . If [image: image1202.png]


 is a fuzzy continuous mapping , then [image: image1203.png]


 is a fuzzy proper mapping if and only if [image: image1204.png]


 is a fuzzy compact .

Proof  [image: image1205.png]


 By proposition ( 7.7 ) .

[image: image1206.png]


  To prove that [image: image1207.png]


 is a fuzzy proper mapping .

[image: image1208.png]O]



 Let [image: image1209.png]


  be a fuzzy closed subset of [image: image1210.png]


 . To prove that [image: image1211.png]f(F)



 is a fuzzy closed set in [image: image1212.png]


 , let [image: image1213.png]


 be a fuzzy compact set in [image: image1214.png]


 . Then [image: image1215.png]fHK)



 is a fuzzy compact set in [image: image1216.png]


 ,  then by theorem ( 3.14 ) ,   [image: image1217.png]FAfHK)



  is fuzzy compact set in [image: image1218.png]


 . Since [image: image1219.png]


 is fuzzy continuous , then [image: image1220.png]f(FAfH(K) )



 is fuzzy compact set in [image: image1221.png]


 . 

     But [image: image1222.png]f(FAfTH(K) )= f(F)AK



 , then [image: image1223.png]f(F) AK



 is fuzzy compact  , thus [image: image1224.png]f(F)



 is compactly fuzzy closed set in [image: image1225.png]


 . Since [image: image1226.png]


 is a fuzzy  [image: image1227.png]


 space , then by theorem       ( 4.5 ) , [image: image1228.png]f(F)



 is a fuzzy closed set in [image: image1229.png]


 . Hence [image: image1230.png]


 is a fuzzy closed mapping .

[image: image1231.png]


 Let [image: image1232.png]Ve € FP(Y)



 . Since [image: image1233.png]


 is fuzzy sc - space , then [image: image1234.png](Ve



 is fuzzy compact in [image: image1235.png]


 . Since [image: image1236.png]


 is a fuzzy compact mapping , then [image: image1237.png]fH (D



 is fuzzy compact in [image: image1238.png]


 . Thus [image: image1239.png]


 is a fuzzy proper mapping . 

Proposition 7.9.   Let [image: image1240.png]


 and [image: image1241.png]


 be fuzzy spaces , such that [image: image1242.png]


 is fuzzy sc – space ,  fuzzy  [image: image1243.png]


 space and [image: image1244.png]


 be a fuzzy continuous mapping . Then the following statements are equivalent :
[image: image1245.png]O]



 [image: image1246.png]


 is a fuzzy coercive mapping .

[image: image1247.png]


 [image: image1248.png]


 is a fuzzy compact mapping .

[image: image1249.png](iid)



 [image: image1250.png]


 is a fuzzy proper mapping .

 Proof  

[image: image1251.png]


 
     By proposition ( 6.5 ) .

[image: image1252.png](if) — (i




 

     By proposition ( 7.8) .

[image: image1253.png]


 

      Let [image: image1254.png]


  be a fuzzy compact set in [image: image1255.png]


 . Since [image: image1256.png]


 is fuzzy proper , then by proposition   ( 7.7 ) , [image: image1257.png]


 is fuzzy compact mapping , then [image: image1258.png]f7H(6)



 is a fuzzy compact set in [image: image1259.png]


 Since  [image: image1260.png]fF(1x\F(6 )) = (1,\6)



  .  Hence [image: image1261.png]


 is a fuzzy coercive mapping .
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