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Abstract
     In this paper we introduce the concept of fuzzy semi - [image: image4.png]


 space and we study their relation ship with the axioms  fuzzy semi -  T1/2 space and fuzzy semi – T0 space.
الخلاصة

في هذا البحث قدمنا مفهوم  الفضاء الضبابي شبة - [image: image6.png]


 ودرسنا العلاقة بينه وبين الفضاء الضبابي شبة - T1/2 والفضاء الضبابي شبة - T0 . 
1. Introduction

     In 1970, Levine introduced the notion of generalized closed sets in topological spaces as a generalization of closed sets. Since then, many concepts related to generalized closed sets were defined and investigated.

     Recently, Balasubramanian and Sundaram [G. Balasubramanian and P. Sundaram , 1997] introduced the concepts of generalized  fuzzy closed sets and  fuzzy T1/2 – spaces . In the present paper, we introduce the concepts of fuzzy semi - [image: image8.png]


 space and study some of their properties . 
2. Preliminaries

      Let X be any set and I be the closed unit interval [0,1]. A fuzzy set in X is an element of the set of all functions from X into I. The family of all fuzzy sets in X is denoted by IX. A member A of IX is contained in a member B of IX, denoted by A ( B, if A(x) ( B(x) for every x ( X [ L. A. Zadeh , 1965 ].

Let A,B ( IX. We define the following fuzzy sets [L. A. Zadeh , 1965]:

(1) A ( B ( IX by (A ( B)(x) = min{A(x) , B(x)} for every x ( X.

(2) A ( B ( IX by (A ( B)(x) = max{A(x) , B(x)} for every x ( X.

(3) Ac ( IX by Ac(x) = 1 - A(x) for every x ( X.

 (4) Let f : X ( Y , A ( IX and B ( IY . Then f(A) is a fuzzy set inY such that f(A)(y) = sup{A(x) : x ( f -1 (y)} , if f -1 (y) ≠ ( and f(A)(y) = 0 , if f -1 (y) = (. Also, f -1(B) is a fuzzy set in X , defined by f -1(B)(x) = B(f(x)), x ( X.

   The first definition of a fuzzy topological space is due to [C. L. Chang , 1968 ] . According to Chang, a fuzzy topological space is a pair (X , T ), where X is a set and T is a fuzzy topology on it, i.e. a family of fuzzy sets (T ( IX) satisfying the following three axioms:

(1)   [image: image10.png]


  (T . By [image: image12.png]


 we denote the characteristic functions X(  and XX , respectively.

      (2) If A , B ( T , then A ( B ( T .

      (3) If {Aj : j ( J} ( T , then ({Aj : j ( J} ( T .

       By using the notion of fuzzy set , [C. K. Wong , 1974 ] was able to introduce and investigate the notions of fuzzy points. In this paper we adopted Pu's definition of a fuzzy point. A fuzzy point  x( is a fuzzy set in X defined by x((x) = ( , x((y) = 0 for all y ≠ x , ( ∈ (0, 1]. The set of all fuzzy singleton in X is denoted by S(X). For every x( ∈ S(X) and A ∈ IX, x( ∈ A iff ( ≤ A(x). For two fuzzy sets A and B, we shall write A q B to mean that A is quasi-coincident with B If and only if there exists x ( X such that Bc (x) ( A(x) or  A(x) + B(x) > 1. if A is not quasi-coincident with B, then we write A /q B , i.e. A(x) ( Bc (x) for all x ( X  . A fuzzy point x( is said to be quasi-coincident with A denoted by x( q A if and only if [image: image14.png]


 > Ac(x) or ( + A(x) > 1 [Pu. Pao-Ming and Liu Ying-Ming , 1980]. For A ∈ IX, the closure, interior, and complement of μ are denoted by [image: image16.png]


  , [image: image18.png]


, and Ac, respectively.

       Let f be a function from X to Y . Then (see for example [K. K. Azad , 1981] , [Naseem Ajmal and B. K. Tyagi , 1991] , [C. L. Chang , 1968] , [Hu Cheng-Ming , 1985 ] , [ Pu. Pao-Ming and Liu Ying-Ming , 1980] , [M. N. Mukherjee and S. P. Sinha , 1990] , [S. Saha , 1987], [C. K. Wong , 1975] , and [Tuna Hatice Yalvac , 1987]):

(1) f -1(Bc) = (f -1(B))c , for any fuzzy set B in Y .

(2) f( f -1(B)) (  B , for any fuzzy set B in Y .

(3) A ( f -1(f(A)) , for any fuzzy set A in X.

(4) Let x(  be a fuzzy point of X , A be a fuzzy set in X and B be a fuzzy set in Y . Then , we have:

(i) If  f(x() q B, then x(  q f -1(B).

(ii) If x(  q A , then f(x() q f(A).

(5) Let A and B be fuzzy sets in X and Y , respectively and x(  be a fuzzy

point in X. Then we have:

(i) x(  (f -1(B) if  f(x() ( B.

(ii) f(x() (  f(A) if x(  ( A.
Definition 2-1:
    let f : (X, τ) → (Y, δ) be a function from a fuzzy topological space X into a fuzzy topological space Y is called fuzzy open (closed ) (in short as f – open (closed ) , if f(A) is fuzzy open ( resp. Fuzzy closed ) set in Y , for each A ( τ  , [C. L. Chang , 1968 ]  . 
Definition 2-2:

A fuzzy set A in fuzzy topological space X is called :

1) Fuzzy semi open set (written in short as fs – open set )  if A ( [image: image20.png]


 

2) Fuzzy semi closed set (written in short as fs – closed set ) if  [image: image22.png]


 ( A 

3) Fuzzy semi generalized – closed set (written in short as fsg – closed set )  if [image: image24.png]


 ( O holds whenever A ( O and O  is fuzzy semi open set , [ R . K . Saraf , and  M . Khanna , 2003 ] , A subset B of X is called to be a fsg – open set if Bc  is fsg – closed set .  
4) Fuzzy generalization semi – closed set ( written in short as fgs – closed set ) if [image: image26.png]


 ( U holds whenever A ( U  and U  is fuzzy open set ,[ H . Maki et al . 1998 ] , A subset B is called to be fgs – open set if B​​c is fgs – closed set .
Definition 2-3:

A fuzzy topological space  X is called :

1) Fuzzy semi – T0 (written in short as fs - T0 space ) if for each pair of fuzzy points x( and y( , with supp(x() ≠ supp(y() , there exists a fs – open set U such that x( (U (  (y( )c or y( ( U ( (x()c  .
2) Fuzzy semi – T1 space (written in short as fs – T1 space) if every pair of fuzzy points x( and y( , with supp(x() ≠ supp(y() , there exists a fs – open sets U and V such that x( ( U (  (y( )c and y( ( V ( (x()c  .
3)  Fuzzy semi – T2 space (written in short as fs – T2 space ) , if for each pair of fuzzy points x( and y( , with supp(x() ≠ supp(y() , there exists a fs – open sets U and V such that x( ( U ( (y()c  , y( ( V ( ( x( ) and U /q V .
Proposition 2-1:

i) Every fsg – closed set is fgs – closed set .

ii) Every fs – closed set is fgs – closed set .

Proof :

i)Let A is fsg – closed set in fts X , to prove A is fgs – closed set , let  [image: image28.png]


 ( U , U is f – open set , then U is fs – open set .

Hence [image: image30.png]


 ( U , U is fs – open .

Therefore A is fgs – closed set .

Since every fs – closed set is fsg – closed set is fgs – closed set , then every fs – closed set is fgs – closed set . 

Definition 2-5:

      a fuzzy topological space X is called fuzzy semi – T1/2 space if every fsg – closed set in fts X is fs – closed set in X .

Theorem 2-6:

 Let (X , T ) be a fuzzy topological space then ,

i) Every fuzzy semi -  T1/2 space is fuzzy semi – T0 space .

ii) Every fs – T1 space is fs – T1/2 space .

Proof:- i) if ( X , T ) is fs – T1/2 space which is not a fs – T0 space , then there exists two fuzzy points x( and y( , with x ≠ y such that[image: image32.png](x0) s



 = [image: image34.png](v,:0) s



 , let A = [image: image36.png](x,0)7"s



 ( ( x()c it will be shown that A is fsg – closed but not fs – closed , let O be an fs – open set containing x( , since x( ( [image: image38.png](v,:0) s



  , y( ( O ≠ [image: image40.png]


 , y( ( O , now   y(  ( [image: image42.png](x,0)7"s



 ( O and this shown succession  , y(  ( [image: image44.png](x,0)7"s



  , ( x( )c (  y( ( y(  ( [image: image46.png](x,0)7"s



 O (( x()c , y(  ( [image: image48.png](x,0)7"s



 ( O ( ( x()c, y(  ( A ( O , this implies x( ( A .consequently , x( ( SD(A) (= set of all semi limit point of A). there for SD(A)  and then A is not fs – closed . now A( G , where G is fs – open set , to show that [image: image50.png]


 ( G , it suffices to prove that  [image: image52.png](x,0)7"s



 (( x()c = A ( G and SD x( ( ( x()c, then SD (x() ( G and thus it needs only to show that x( . if possible , let x( ( Gc , then y( ([image: image54.png](x0) s



  ( Gc , hence y( ([image: image56.png](x,0)7"s



 ( ( x()c = A ( G . thus y​( ( G (Gc , a contradiction . 

Therefore [image: image58.png]


 ( G , so A is fs – closed . 

Therefore ( X , T ) is fs – T0 space .

ii) Let ( X , T ) be fs – T1 space , it suffice to show that a set which is not  fs – closed is also not a fsg – closed set . suppose A ( X , A is not fs – closed , let x( ([image: image60.png]


 , then  x(  ( [image: image62.png]


 - A (since X is fs – T1 space ) , x( is fs – closed set , A is not fsg – closed , hence ( X , T ) is fs – T1/2 space .

Definition 3-1:

a  fuzzy topological space  ( X , T ) is called fuzzy semi  - [image: image64.png]


 space if every fgs – closed set is fuzzy closed set .
Theorem 3-2:

Let (X , T) be fts , then 

i) Every fs - [image: image66.png]


 space is fs – T1/ 2  space .

ii) Every fs - [image: image68.png]


 space is fs – T0 space .
Proof : i) suppose X is fs - [image: image70.png]


 space . 

Let A ( X , and A is fsg – closed .

Then A is fgs – closed set ( by proposition 2 - 4   )

And since ( X , T ) is fs - [image: image72.png]


space . 

So A is closed , then A is fs – closed set .

( every f – closed set is fs – closed set ) . 

Therefore ( X , T ) is fs – T1/2 space .

ii) since every fs T1/2 space is fs – T0 space ( By theorem 2 - 6 ) and part(i) 

then fs - [image: image74.png]


space is fs – T0 space .

Theorem 3-3:

 Every subspace of a fs - [image: image76.png]


 space is also a fs - [image: image78.png]


 space . 

Proof :- let Y by a subspace of a fs - [image: image80.png]


 space  X .

let y( ( Y ( X , then {y(} is f - open sets  and f - closed set in X .

then y(  is f - closed set or f - open set in Y .

thus Y is fs - [image: image82.png]


 space .
Theorem 3-4:

 a fuzzy topological space ( X , T ) is fs - [image: image84.png]


space iff for each x( ( X , either x(  is fuzzy open or is fuzzy closed .

proof : 

necessity : suppose X is fs - [image: image86.png]


space , and for some x( ( X ,  x(  is not f – closed .

since X is only f – open of ( x( )c , then ( x( )c is fgs – closed .

hence  x(  is f – open .

sufficiency   :

let A ( X , and A is fgs – closed set .

let x( ( [image: image88.png]


 , if (x() is f – open , x( ( A ≠ [image: image90.png]


 , or  x(  is f – closed and [image: image92.png]


 ( A ≠ [image: image94.png]


 , then x( ( A ≠ [image: image96.png]


 , in either case x( ( A , so [image: image98.png]


 ( A , [image: image100.png]


 = A , then A is f  - closed .

therefore X is fs - [image: image102.png]


space .

Theorem 3-5:

 ( X ,T ) is fs - [image: image104.png]


  space  iff every subset of X is the intersection of all open sets and all closed sets containing it .  

proof: Necessity : let (X,T) is fs -  [image: image106.png]


 space and A ( X , arbitrary 

then A = ( {(x()c : x( ( A} an intersection of f - closed sets and f -  open sets , 

then ( x( )c is f - closed or (x()c is f - open sets (by theorem ( 3 – 4 ))

sufficiency : for each x( ( X , ( x( )c is the intersection of all f -  open sets and f - closed sets containing it ,  thus ( x( )c is either f - open set or f - closed set in X , 

then ( X ,T ) is fs - [image: image108.png]


  space .

Theorem 3-6:
 if the domain of a bijective , f - closed and f - open map is a fs - [image: image110.png]


  space  then so is the codomain .

Proof :- Let f : (X,T) ((Y,() be a bijective ,f - closed and f - open map .

suppose ( X,T) is fs - [image: image112.png]


    - space .

let y( ( Y , f is a bijective , then y( = f (x( ) for some x( ( X .

since (X,T) is fs - [image: image114.png]


 space , then x( is f - closed or f - open set.

if  x(  is f - closed ,  then y(  = f ( x(  ) is f - closed (since f is f - closed map ) 

if x(  is f - open , then y( = f ( x( )  is f - open  ( since f is f - open map ) .
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