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 Abstract
In this work, we study Lipschitz continuity of
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الخلاصة
           في هذا العمل درسنا  استمرارية ليبشتز الى  
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تؤدي الى استمرارية ليبشتز الى توسيعها التوافقي  
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 تطبيق شبه منتظم.استمرارية هولدر الى
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 تؤدي الى استمرارية هولدر الى توسيعها التوافقي 
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1. Introduction and Preliminaries 
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 quasiconformal mapping is not differentiable map non empty and the behavior of the mapping may be very curious at the points of this set ,which has also Lebesgue measure zero . Thus ,there is substantial difference between the two cases  
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a) there are neither general existence theorems nor counterpart of power series expansions in higher dimensions;

b) the usual methods of function theory are not applicable in the higher dimensional setup; 

c) in the plane case the class of conformal mappings is  very rich ,while in higher dimensions is very small;

d )  for dimension 
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  the branch set (i.e the set of those points at which the mapping fails to be local homeomorphism ) is more complicated than in two –dimensional case ;for instance ,it dose not contain isolated points.
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The values of a real harmonic function on the unit disk can be computed using convolution formula involving values of the harmonic function on the boundary of the unit disk and the Poisson kernel . Poisson kernels can be written for other domain :For example , the 
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     The situation is different for 
[image: image134.wmf]a

C

 (or Holder ) continuous 
[image: image135.wmf]n

n

R

S

®

-

1

:

f

 ,


[image: image136.wmf]1

0

<

<

a

 , i.e , for
[image: image137.wmf]f

 satisfying  
[image: image138.wmf]a

h

x

h

f

x

f

-

£

-

C

)

(

)

(

. In that case Holder continuity of 
[image: image139.wmf]f

 implies Holder continuity of its harmonic extension 
[image: image140.wmf]]

[

f

P

u

=

 , (see [Dyakonov1997,Rickman1993]). In the case 
[image: image141.wmf]2

=

n

 it’s a classical result ,following from Privalovs theorem ( see  Zygmund 1952).
2. Main Result

In this section we state and prove the main result of this paper .The following theorem appears in (see Matelejevic. 2006) without proof we give the proof  for completeness .
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Proof: Before we give the proof we must know that   Kalaj obtained a related result, but under additional assumption of
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    The main part of the proof is the estimate of the tangential derivatives of u , and in that part quasiregularity plays no rolc. We choose 
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It is important to note that this kernel is odd in 
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Using the elementary inequality 
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 In order to estimate the integral, we split 
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 Combining those two  estimation we get 
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Now the mean value theorem gives Lipschitz continuity of 
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This gives a counterexample in any dimension
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