OSI Network Layer
OSI Layer 3

Network Fundamentals – Chapter 5
Objectives

- Identify the **role** of the Network Layer, as it describes **communication from one end device to another end device**

- Examine the most common Network Layer **protocol**, **Internet Protocol (IP)**, and its features for providing **connectionless** and best-effort service

- Understand the principles used to guide the **division or grouping** of devices into networks

- Understand the **hierarchical addressing** of devices and how this allows communication between networks

- Understand the fundamentals of **routes**, **next hop** addresses and **packet forwarding** to a destination network
next-hop

The next point of routing. When routers are not directly connected to the destination network, they will have a neighboring router that provides the next step in routing the data to its destination.
Network Layer Protocols and Internet Protocol (IP)

- Define the basic role of the Network Layer in data networks
Layer 3 uses four basic processes:

- Addressing
- Encapsulation
- Routing
- Decapsulation
1- Addressing

- First, the Network layer must provide a mechanism for addressing these end devices. If individual pieces of data are to be directed to an end device, that device must have a unique address.

- In an IPv4 network, when this address is added to a device, the device is then referred to as a host.
2- Encapsulation

Second, the Network layer must provide encapsulation.

- During the encapsulation process, Layer 3 receives the Layer 4 PDU and adds a Layer 3 header, or label, to create the Layer 3 PDU. When referring to the Network layer, we call this PDU a packet.

- Layer 4 PDU + Layer 3 header, or label = packet

- When a packet is created, the header must contain, among other information, the destination address. The Layer 3 header also contains the source address.
3- Routing

Next, the Network layer must provide services to “direct” these packets to their destination host. The source and destination hosts are not always connected to the same network. In fact, the packet might have to travel through many different networks. Along the way, each packet must be guided through the network to reach its final destination. Intermediary devices that connect the networks are called routers. The role of the router is to select paths for and direct packets toward their destination. This process is known as routing.
Network Layer Protocols

Protocols implemented at the Network layer include:

- Internet Protocol version 4 (IPv4)
- Internet Protocol version 6 (IPv6)
- Novell Internetwork Packet Exchange (IPX)
- AppleTalk
- Connectionless Network Service (CLNS/DECNet)
Basic characteristics of the IPv4 protocol

TCP/IP

- Connectionless - No connection is established before sending data packets.
- Best Effort (unreliable) - No overhead is used to guarantee packet delivery.
- Media Independent - Operates independently of the medium carrying the data.

Internet Protocol IPv4 was designed as a protocol with low overhead. It provides only the functions that are necessary to deliver a packet from a source to a destination over an interconnected system of networks.
Connectionless Service

- An example of **connectionless** communication is sending a letter to someone *without notifying* the recipient in advance, *see next figure*. Connectionless data communications works on the same principle. IP packets are sent without notifying the end host that they are coming.

- **Connection-oriented protocols**, such as TCP, require that control data be exchanged to establish the connection as well as additional fields in the PDU header.

- **Connectionless** packet delivery may, however, result in packets arriving at the destination *out of sequence*. If out-of-order or missing packets create problems for the application using the data, then *upper layer services* will have to resolve these issues.
Network Layer Protocols and Internet Protocol (IP)

- Describe the implications for the use of the IP protocol as it is connectionless

![Diagram of Connectionless Communication]

A letter is sent.

The sender doesn't know:
- if the receiver is present
- if the letter arrived
- if the receiver can read the letter

The receiver doesn't know:
- when it is coming
Network Layer Protocols and Internet Protocol (IP)

- Unreliable protocol

As an unreliable Network layer protocol, IP does not guarantee that all sent packets will be received.

Other protocols manage the process of tracking packets and ensuring their delivery.
Network Layer Protocols and Internet Protocol (IP)

- Use of the IP as it is media independent
There is, however, one major characteristic of the media that the Network layer considers: the maximum size of PDU that each medium can transport. This characteristic is referred to as the Maximum Transmission Unit (MTU).

intermediary device - usually a router - will need to split up a packet when forwarding it from one media to a media with a smaller MTU. This process is called fragmenting the packet or fragmentation.
Network Layer Protocols and Internet Protocol (IP)

- Segments are encapsulated as packets

In TCP/IP based networks, the Network layer PDU is the IP packet.
- Header fields in the IPv4 protocol
- IP Source Address
- IP Destination Address
- Time-to-Live (TTL)
- Type-of-Service (ToS)
- Protocol
- Fragment Offset
IP Destination Address

- The IP Destination Address field contains a 32-bit binary value that represents the packet destination Network layer host address.

IP Source Address

- The IP Source Address field contains a 32-bit binary value that represents the packet source Network layer host address.
The Time-to-Live (TTL) is an 8-bit binary value that indicates the remaining "life" of the packet.

The TTL value is decreased by at least one each time the packet is processed by a router (that is, each hop). When the value becomes zero, the router discards or drops the packet and it is removed from the network data flow. This mechanism prevents packets that cannot reach their destination from being forwarded indefinitely between routers in a routing loop.
Protocol

- This 8-bit binary value indicates the data payload type that the packet is carrying. The Protocol field enables the Network layer to pass the data to the appropriate upper-layer protocol.

- Example values are:
 - 01 ICMP
 - 02 TCP
 - 17 UDP
Type-of-Service

- The Type-of-Service field contains an 8-bit binary value that is used to determine the priority of each packet. This value enables a Quality-of-Service (QoS) mechanism to be applied to high priority packets, such as those carrying telephony voice data.
Fragment Offset

- As mentioned earlier, a router may have to fragment a packet when forwarding it from one medium to another medium that has a smaller MTU. When fragmentation occurs, the IPv4 packet uses the “Fragment Offset field” and the “MF flag” in the IP header to reconstruct the packet when it arrives at the destination host. The fragment offset field identifies the order in which to place the packet fragment in the reconstruction.
More Fragments flag

IF $MF=1$ THEN fragment not last, see Fragment Offset to where this fragment is to be placed in the reconstructed packet

IF $MF = 0$ and fragment offset $<> 0$ THEN it places that fragment as the last part of the reconstructed packet.

An has all zero fragmentation information

IF $(MF = 0$ and fragment offset $= 0)$ THEN unfragmented packet.
Don't Fragment flag

- The Don't Fragment (DF) flag is a single bit in the Flag field that indicates that fragmentation of the packet is not allowed.

IF \(DF=1 \) **THEN** *fragmentation of this packet is NOT permitted.*

If a router needs to fragment a packet to allow it to be passed downward to the Data Link layer but the DF bit is set to 1, then the router will *discard* this packet.

- *See your material for other fields and example.*
Grouping Devices into Networks and Hierarchical Addressing

- List several different reasons for grouping devices into sub-networks and define several terms used to identify the sub-networks.
as our networks grow, they may become too large to manage as a single network. At that point, we need to divide our network. When we plan the division of the network, we need to group together those hosts with common factors into the same network.

Networks can be grouped based on factors that include:

- Geographic location
- Purpose
- Ownership
Grouping Devices into Networks and Hierarchical Addressing

- List several ways in which dividing a large network can increase network performance

Replacing the middle switch with a router creates 2 IP subnets, hence, 2 distinct broadcast domains. All devices are connected but local broadcasts are contained.
Broadcast Domain

A broadcast is a message sent from one host to all other hosts on the network.

All devices in this network are connected in one broadcast domain when the switch is set to the factory default settings. Since switches forward broadcasts by default, broadcasts are processed by all devices in this network.
Typically, a host initiates a broadcast when information about another unknown host is required. However, large numbers of hosts generate large numbers of broadcasts that consume network bandwidth. And because every other host has to process the broadcast packet it receives, the other productive functions that a host is performing are also interrupted or degraded.
Grouping Devices into Networks and Hierarchical Addressing

- List several ways in which dividing a large network can increase network security
Grouping Devices into Networks and Hierarchical Addressing

- Explain the communication problems that emerge when very large numbers of devices are included in one large network.
The Internet consists of millions of hosts, each of which is identified by its unique Network layer address. To expect each host to know the address of every other host would impose a processing overhead on these network devices that would severely degrade their performance.

Dividing large networks so that hosts who need to communicate are grouped together reduces the unnecessary overhead of all hosts needing to know all addresses.

For all other destinations, the hosts only need to know the address of an intermediary device, to which they send packets for all other destinations addresses. This intermediary device is called a gateway. The gateway is a router on a network that serves as an exit from that network.

What are common problems with a large network?
Common problems with a large network?

- 1- performance degradation
- 2- security issues
- 3- host identification
Hierarchical Addressing

- Describe how hierarchical addressing solves the problem of devices communicating across networks of networks.

At each step of delivery, the post office need only examine the next hierarchical level.
Hierarchical Addressing

A hierarchical address:

- uniquely identifies each host, It also has levels that
- assist in forwarding packets across internetworks,

- To be able to divide networks, we need hierarchical addressing.
Hierarchical Network layer addresses, Layer 3 addresses, supply the **network portion** of the address. Routers forward packets between networks by referring only to the part of the Network layer address that is required to **direct the packet toward the destination network**.

By the time the packet arrives at the destination host network, the **whole destination address of the host** will have been used to deliver the packet.
Hierarchical IPv4 Address

32 bits

Network Portion Host Portion

8 bits (Octet) 8 bits (Octet) 8 bits (Octet) 8 bits (Octet)

192 . 168 . 18 . 57

Network Host

Complete IPv4 Address
Further subdividing networks into smaller networks

- With IPv4 hierarchical addressing, the **network portion** of the address for all hosts in a network is the same.

- To *divide a network*, the network portion of the address is **extended** to use bits from the host portion of the address. These borrowed host bits are then used as network bits to represent the different **subnetworks** within the range of the original network.

- Given that an IPv4 address is 32 bits, when host bits are used to divide a network the more subnetworks created results in **fewer** hosts for each subnetwork. Regardless of the number of subnetworks created however, **all 32 bits are required to identify an individual host.**
The number of bits of an address used as the network portion is called the **prefix length**. For example if a network uses 24 bits to express the network portion of an address the prefix is said to be /24.

In the devices in an IPv4 network, a separate 32-bit number called a **subnet mask** indicates the prefix.

For the purposes of explanation, however in this chapter the first 24 bits of an IPv4 address will be used as the network portion.
Fundamentals of Routes, Next Hop Addresses and Packet Forwarding

- **Within a network** or a **subnet**, hosts communicate with each other **without** the need for any Network layer **intermediary device**.

- When a host needs to communicate with **another network**, an intermediary device, or **router**, acts as a gateway to the other network.
Describe the role of an intermediary gateway device in allowing devices to communicate across sub-divided networks.
As a part of its configuration, a host has a **default gateway address** defined. As shown in the figure, this **gateway address** is the address of a router interface that is connected to the same network as the host.

To communicate with a device on another network, a host uses the **address of this gateway**, or **default gateway**, to forward a packet outside the local network.
The router also needs a route that defines where to forward the packet next. This is called the next-hop address. If a route is available to the router, the router will forward the packet to the next-hop router that offers a path to the destination network.
If communication is between hosts in **different networks**, the local network delivers the packet from the source to its **gateway router**. The **router examines** the **network portion** of the packet **destination address** and forwards the packet to the appropriate interface. **If the destination network is directly connected to this router**, the packet is **forwarded directly to that host**. **If the destination network is not directly connected**, the packet is **forwarded on to a second router** that is the **next-hop router**.

- Host → gateway (router) → Host
- Host → Gateway (Router) → another Router → ……

The packet forwarding then becomes the responsibility of this second router. Many routers or hops along the way may process the packet before reaching the destination.
Fundamentals of Routes, Next Hop Addresses and Packet Forwarding

- Trace the steps of an IP packet as it traverses unchanged via routers from sub network to sub-network.
The gateway, also known as the default gateway, is needed to send a packet out of the local network. If the network portion of the destination address of the packet is different from the network of the originating host, the packet has to be routed outside the original network. To do this, the packet is sent to the gateway. This gateway is a router interface connected to the local network. The gateway interface has a Network layer address that matches the network address of the hosts.

The hosts are configured to recognize that address as the gateway.
The gateway is configured in Windows using Internet Protocol (TCP/IP) Properties.
As shown in the following figure, the IP address of the default gateway of a host can be viewed by issuing the *ipconfig* or *route print* commands at the command line of a Windows computer. The *route* command is also used in a Linux or UNIX host.
Confirming the Gateway Settings

C:\>ipconfig

Windows IP Configuration

Ethernet adapter Local Area Connection:

- Connection-specific DNS Suffix :
- IP Address : 192.168.1.2
- Subnet Mask : 255.255.255.0
- Default Gateway : 192.168.1.254

Sample ipconfig output showing default gateway address

Default gateway address for this host computer
Routing Table

- When a router interface is configured with an IP address and subnet mask, the interface becomes part of that network. The routing table now includes that network as a directly connected network.

- All other routes, however, must be configured or acquired via a routing protocol.

- To forward a packet the router must know where to send it. This information is available as routes in a routing table.
Connected networks are directly attached to one of the router interfaces. These interfaces are the gateways for the hosts on different local networks.

Remote networks are networks that are not directly connected to the router. Routes to these networks can be manually configured on the router by the network administrator or learned automatically using dynamic routing protocols.
Routes in a routing table have three main features:

- Destination network
- Next-hop
- Metric

The router matches the destination address in the packet header with the destination network of a route in the routing table and forwards the packet to the next-hop router specified by that route. If there are two or more possible routes to the same destination, the metric is used to decide which route appears on the routing table.
Fundamentals of Routes, Next Hop Addresses and Packet Forwarding

- Define a route and its three key parts

Local Router Routing Table

<table>
<thead>
<tr>
<th>Destination Network</th>
<th>Next Hop Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1.1.0/24</td>
<td>192.168.1.2/24</td>
</tr>
<tr>
<td>10.1.2.0/24</td>
<td>192.168.1.2/24</td>
</tr>
</tbody>
</table>
Describe the purpose and use of the destination network in a route.

Confirming the Gateway and Route

10.0.0.0/24 is subnetted, 2 subnets
R 10.1.1.0 [120/1] via 192.168.2.2, 00:00:08, FastEthernet0/0
R 10.1.2.0 [120/1] via 192.168.2.2, 00:00:08, FastEthernet0/0
C 192.168.1.0/24 is directly connected, FastEthernet0/0

This is the routing table output of Local Router when the "show ip route" is issued.

The next hop for networks 10.1.1.0/24 and 10.1.2.0/24 from Local Router is 192.168.2.2.
Packets cannot be forwarded by the router without a route. If a route representing the destination network is *not on the routing table*, the packet will be **dropped** (that is, not forwarded (that is, not forwarded)).

The router may also use a **default route** to forward the packet. The default route is *used when the destination network is not represented by any other route in the routing table.*
When the destination network is not listed in the routing table of a router

1 - The router forwards the packet out the interface indicated by the default route entry

2 - The router discards the packet
Host Routing Table

- A host creates the routes used to forward the packets it originates. These **routes are derived from the connected network** and the **configuration of the default gateway**.

- the routing table of a computer host can be examined at the command line by issuing the **netstat -r**, **route**, or **route PRINT** commands.
Interface List

0x2 ...00 0f fe 26 f7 7b ... Gigabit Ethernet - Packet Scheduler Miniport

===

Active Routes:

<table>
<thead>
<tr>
<th>Network Destination</th>
<th>Netmask</th>
<th>Gateway</th>
<th>Interface</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>192.168.1.254</td>
<td>192.168.1.2</td>
<td>20</td>
</tr>
<tr>
<td>192.168.1.0</td>
<td>255.255.255.0</td>
<td>192.168.1.2</td>
<td>192.168.1.2</td>
<td>20</td>
</tr>
</tbody>
</table>

Default Gateway: 192.168.1.254

// output omitted //

This is an example of a routing table on an end device after the netstat -r command is issued. Note that it has a route to its network (192.168.1.0) and a default route (0.0.0.0) to the router gateway for all other networks.
Routing Protocol

- The **routing table** contains the *information that a router uses in its packet forwarding decisions*. For the routing decisions, the routing table needs to represent the most accurate state of network pathways that the router can access. **Out-of-date routing information** means that packets may not be forwarded to the most appropriate next-hop, causing delays or packet loss.
Route information can be manually configured on the router (static routing) (not always feasible) or learned dynamically from other routers in the same internetwork.

Routing protocols are the set of rules by which routers dynamically share their routing information.

Common routing protocols are:

- Routing Information Protocol (RIP)
- Enhanced Interior Gateway Routing Protocol (EIGRP)
- Open Shortest Path First (OSPF)

What are advantages and disadvantages of static and dynamic routing?
Which protocol provides connectionless network layer services?

- IP
- TCP
- UDP
- OSI
Which part of a network layer address does the router use during path determination?

- The host address
- The router address
- The server address
- The network address
Which network layer device can separate a network into different broadcast domains?

- hub
- bridge
- switch
- router
What commands can be used to view a host's routing table? (Choose two.)

- ipconfig /all
- netstat -r
- ping
- route PRINT
- telnet
What are three pieces of information about a route are contained in a routing table? (Choose three.)

- next-hop
- source host address
- metric
- destination network address
- last-hop
- default gateway
What kinds of problems are caused by excessive broadcasts traffic on a network segment? (Choose three.)

- consumes network bandwidth
- increases overhead on network
- requires complex address schemes
- interrupts other host functions
- divides networks based on ownership
- advanced hardware required