University of Babylon/ College of Engineering/Environmental Eng. Department Subject: Water Engineering Stage : Third Lecturer: Prof. Dr. Jabbar H. Al-Baidhani

REFERENCES:

1-Environmental Engineering

By: Howard S. Peavy, Donald R. Rowe, George Tchobanoglous

2-Wastewater Treatment Plants, Planning, Design, and Operation

By: Syed R. Qasim

3-Wastewater Engineering Treatment Disposal and Reuse, Second Edition

By: Metcalf & Eddy, INC.

4-Water Works Engineering

By: Planning, Design & Operation

By: Syed Qasim, Edward M. Motley, Guang Zhu

Treatment Plants

5- Water and Wastewater Engineering , Design Principles and Practice

By: Mackenzie L. Davis

6-Principles of Water Quality Control, fifth edition

By: T. H. Y. Tebbutt

7- Water Supply and Sewerage, Fifth & Sixth Edition, By:E. W. Steel and Terence J. McGhee,1979,1985,McGraw-Hill, Inc.

The development of water engineering has paralleled and contributed to the growth of cities. Without an adequate supply of safe water, the great city could not exist, and the live in it would be both unpleasant and dangerous unless human and other wastes were promptly removed. The concentration of pollution in relatively small areas has main the task of the sanitary or the environmental engineers more complex.

Groundwater supplies are frequently inadequate to the huge demand and surface waters, polluted by cities, towns, and villages on watersheds, must be treated more and more elaborately as the population density increases. Industry also demands more and better water from all available sources.

- The rivers receive ever- increasing amounts of sewage and industrial wastes, thus requiring more attention to sewage treatment, stream pollution, and the complicated phenomena of self – purification.
- The design, construction, and operation of water works are the treated in the course of water engineering.

The water engineering includes two courses, each course extended on fifteen weeks. The syllabus for each course are shown in the following tables:

No.	ITEM
.1	WATER SUPPLY SYSTEM
	 ANATOMY OF A WATER SYSTEM
	 OBJECTIVES OF A WATER SUPPLY SYSTEM
	 CONSTILENTS OF A WATER SUPPLY SYSTEM
.2	POPULATION ESTIMATION AND FORECASTING
	 METHODS OF POPULATION ESTIMATIONS
	 DESIGN PERIOD (THE DESIGN LIFE)
	POPULATION DENSITY
.3	COMPONENTS OF MUNICIPAL WATER DEMAND
	 DOMESTIC OR RESIDENTIAL WATER DEMAND
	INDUSTRIAL DEMAND
	 INSTISTUTION AND COMMERCIAL DEMAND
	PUBLIC WATER USE
	 LOSSES AND WASTES
	 FACTORS AFFECTING PER CAPITA DEMAND
	 VARIATIONS IN RATE OF CONSUMPTION
	FIRE DEMAND
.4	QUALITY OF WATER SUPPLIES
	 PHYSICAL CHARACTERISTICS OF WATER
	 CHEMICAL CHARACTERISTICS OF WATER
	 BIOLOGICAL CHARACTERISTICS OF WATER
	 RADIOLOGICAL ASPECTS OF WATER
	 PARTICULAR PAREMETERS GROUPS
	 DRINKING WATER QUALITY STANDARDS

.5	PUMPS AND PUMPING STATIONS
	TOTAL DYNAMIC HEAD
	 MATHEMATICAL MODELS AND CALCULATIONS OF HEAD
	WORK POWER AND EFFICIENCY
	 NET POSITIVE SUCTION HEAD (NPSH)
	CAVITATION
	 CLASSIFICATION OF PUMPS
	 AFFINITY LAWS OF PUMPS
	 SPECIFIC SPEED, N₅
	PUMP SELECTION
	PUMP CHARACTERISTIC CURVES
.6	SOURCES OF WATER
	GROUNDWATER
	SURFACE WATER
	 FACTORS FOR SOURCE SELECTION
.7	RAW WATER INTAKES, SCREENING AND AERATION
	TYPES OF INTAKES
	FACTORS GOVERING LOCATION OF INTAKES
	DESIGN CONSIDERATIONS
	DESIGN OF INTAKES AND SCREENS
.8	WATER TREATMENT
-	WATER COAGULATION
	CHARACTERISTICS OF COLLOIDS
	ZETA POTENTIAL
	COAGULANTS
	RAPID MIX (FLASH MIX)
	POWER REQUIREMENTS
	MIXER POWER
	DESIGN LIMITATIONS

.10	FLOCCULATION
	 TYPES OF FLOCCULATORS
	 TYPES OF FLOCCULATORS
	 DESIGN CRITERIA FOR FLOCCULATION BASINS
	 POWER IMPARTED AND VELOCITY GRDIENT OF FLOCCULATION BASIN
.11	GRAVITY SEPARATION THEORY
.12	DISCRETE PARTICLE SETTLING THEORY (TYPE 1 SETTLING)
	 SETTLING IN THE LAMINAR REGION
	 SETTLING IN THE TRANSITION REGION
	 SETTLING IN THE TURBULENT REGION
	 IDEAL DESECRET PARTICLE SETTLING
.13	FLOCCULANT PARTICLE DETTLING (TYPE 2 SETTLING)
.14	HINDERED (ZONE) SEDIMENTATION (TYPE 3 SETTLING)
.15	COMPRESSION SEDIMENTATION (TYPE 4 SETTLING)
.16	SEDIMENTATION BASINS
	 SEDIMENTATION BASINS DESIGN
	 PRESEDIMENTATION FACILITIES
	 RECTANGULAR SEDIMENTATION BASINS
	 INLET STRUCTURE
	OUTLET STRUCTURE
	SLUDGE ZONE
	 HORIZONTAL FLOW VELOCITY
	 CIRCULAR SEDIMENTATION BASINS AND UPFLOW CLARIFIERS
	 TUBE AND LAMELLA PLATE CLARIFIERS
	PROCESS CONFIGURATION

7	WATER FILTRATION (FLOW THROUGH POROUS MEDIAS)
	 SLOW SAND FILTER
	 OPEN RAPID SAND FILTER (GRAVITY FILTER)
	 CLOSED RAPID SAND FILTER (PRESSURE FILTER)
	 FILTRATION RATE (LOADING RATE)
	 FILTER MEDIA AND TYPE (Grain Size Characteristics by sieve analysis)
	 HEAD LOSSES
	 THE KOZENY EQUATION
	 THE FAIR AND HATCH EQUATION
	THE ROSE EQUATION
	 BACHWASHING
3	DISINFECTION AND STERILIZATION
	MEDIA
	 PHYSICAL METHODS OF DISINFECTION:
	 CHEMICAL METHODS OF DISINFECTION:
	CHLORINATION
	 CHLORINE-BASED ALTERNATIVE DISINFECTANTS
	 NON-CHLORINE ALTERNATIVE DISINFECTANTS
	CHLORINE DEMAND CURVE
	 DISINFECTION KIENETICS
	CT, CONCEPT
	 LOG INACTIVATION, CONCEPT
	CT, FORMULATION
	 CT AND LOG INACTIVATION CALCULATION OVERVIEW
	 FACTORS INFLUENCING DISINFECTION