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Chapter Two  

Yield line 
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Yield line analysis for slabs 

Most concrete slabs are designed for moments found by the methods based 
essentially upon elastic theory. On the other hand, reinforcement for slabs is 
calculated by strength methods. That account for the actual inelastic 
behavior of member at the factored load stage. A corresponding 
contradiction exists in the process by which beams and frames are analyzed 
and designed, and the concept of limit, or plastic analysis of reinforced 
concrete was introduced. 

 For slabs there is a good reason for interest in limit analysis. The 
elasticity-based methods are restricted in important ways. But in the 
practice, many slabs do not meet these restrictions, for example for round or 
triangular slabs, slabs with large openings, slabs supported on two or three 
edges only (as shown in fig. below), and slabs carrying concentrated loads. 
Limit analysis provides a powerful tool for treating such problems. 

 

Fig(2-   ): Slabs supported at two edges or three. 

For slabs which typically have tensile reinforcement ratio much below the 
balanced value and consequently have large rotation capacity it can be 
safely assumed that the necessary ductility is present. Practical methods for 
the plastic analysis are thus possible and Yield line theory is one of these. 

The plastic hinge was defined as a location along a member in a 
continuance beam or frame at which upon over loading, there would be 
large inelastic rotation at essentially a constant resisting moment. For slabs 
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the corresponding mechanism is the yield line. The yield line serves as an 
axis of rotation for the slab segment. 

A simply supported uniformly loaded reinforced concrete slab shown in 
Fig(2-2) with ߩ <  ௕. The elastic moment is shown, as the load isߩ
increased, when the applied moment becomes equal to the flexural capacity 
of the slab cross section. The tensile steel starts to yield along the transvers 
line of max moment. 

Upon yielding, the curvature of the 
slab at the yielding section increases 
sharply. And deflection increases 
disproportionately. 

The hinge that forms at the yield line 
rotates with essentially constant 
resistance. 

The resistance (݉௣) per unit width of 
the slab is the nominal flexural 
strength of the slab 

݉௣ = ݉௡ 

For design purposes, ݉௣will be taken 
equal to ∅݉௡ 

  

Fig.(2-2) Slab simply 
supported uniformly loaded 

one way slab 
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The fixed-fixed slab shown 
in Fig(2-3) is loaded 
uniformly and assumed to 
be equally reinforced for 
(+m) and (−m). As the 
load in increased the more 
hingly stressed section at 
support start yielding. 
Rotations occur at the 
support line hinges. The 
load can be increased 
further, until the moment at 
mid span becomes equal to 
the moment capacity there, 
and a third yield forms. 
The slab is now a 
mechanism. Large 
deflection occurs and 
collapse takes place. 
Elastic distribution of 
moments shown in Fig (2-2 
b) the ratio of these 
moments just before 
collapse (Fig 2-2 c) 

  

Fig(2-2) Fixed-end uniformly 
loaded one-way slab 
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The terms positive yield line and negative yield line are used to distinguish 
between those associated with tension at the bottom and tension at the top 
of the slab respectively 

Notation 

 

  

 
Column 

 Simply supported 

 Either cautious of fixed end 
 Beam 

 +ve Y.L [Tension at bottom face] 

 -ve Y.L [Tension at Top face] 

 
Point 

 Axes of rotation 



2015-2016                                                                                                    45 

 Prof. Dr. Mustafa B. Dawood                       Dr. Bilal Ismaeel Al-Shraify 
 

Rules of yield lines  

1- Yield lines are straight lines because they represent the intersection of 
two planes. 

2- Yield lines represent axes of rotation. 
3- The support edges of the slab will also establish axes of rotation. 
4- An axis of rotation will pass over any column. 
5- Yield lines from under concentrated load radiating out word from the 

point of application. 
6- A yield line between two slab segments must pass through the point of 

intersection of the axes of rotation of the adjacent slab system. 

In Fig 2-3 which shows a 
slab supported along its 
four sides, rotation of slab 
segments A and B is about 
ab and cd respectively. 
The yield line ef between 
these two segments is a 
straight line passing 
through f the point of 
intersection of the axes of 
rotation. 

 
Fig.(2-3) Two-way slab with simply supported 

edges 
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four ColumnFree edge

Axes of rotation

Fixed End

Col.

B

A C

Fixed End

S.S
S.S

Simply supported all sides

(a)

(c)

(b) (d)

(f) (g)

 

Fig.(2-4) Typical yield line patterns 
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Method of analysis for yield line  

1- Method of segment equilibrium 
It requires consideration of the equilibrium of the individual slab 
segments forming the collapse mechanism and leads to a set of 
simultaneous equations permitting solution for the unknown 
geometric parameters and for the relation between load capacity and 
resisting moments. 

2- Method of virtual work 
This method is based on equating the internal work done at the plastic 
hinges with the external work done by the loads as the predefined 
failure mechanism is given a small virtual displacement. 
The yield line method of analysis for slabs is an upper bound 
approach in the sense that the true collapse load will never be higher, 
but may be lower, and then the load predicted. The solution has two 
essential parts: 
a- Establishing the correct failure pattern 
b- Finding the geometric parameters that define the exact location and 

orientation of the yield lines and solving for the relation between 
applied load and resisting moments. 
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Eternal work done by load  

An external load acting on a slab segment, as a small virtual displacement is 
imposed does work equal to the product of its constant magnitude and the 
distance through which the point of application of the load moves. If the 
load is distributed over a length or an area, rather than concentrated, the 
work can be the work can be calculated as the product of the total load and 
the displacement of the point of application of its resultant. 

 If a segments slab carrying a single concentrated load at its center 
(Fig(2-5 a)). Is given a virtual displacement defined by a unit value 
under the load, the external work is 

௘ܹ = ܲ ∗ 1.0 
 When a distributed load (ݓ) per unit area acts on a triangular segment 

defined by a hinge and yield lines, such as Fig.(2-5b) 

௘ܹ =
ܾ ܽ ݓ

2 ∗
1
3 =

ܾ ܽ ݓ
6  

While for the rectangular slab segment shown in Fig(2-5 c). Carrying 
a distributed load ݓ per unit area, the external work is  

௘ܹ =
ܾ ܽ ݓ

2  

 More complicated trapezoidal shapes may always be subdivided into 
component triangles and rectangles 

P

a

b

Y.L

a/3

=1.0

=1.0
P a

b

a/2

=1.0

(a) (b) (c)  

Fig(2-5) External work basis for various types of loads. 
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Internal work done by resisting moments: 

The internal work done during the assigned virtual displacement is found by 
summing the production of yield moment (݉) per unit length of hinge 
times the plastic rotation (ߠ) at the respective yield lines. If the resisting 
moment(݉) is constant along a yield line of length (ܮ) and if a rotation (ߠ) 
is experienced, the internal work is : 

௜ݓ = ܮ                       ∅ܮ݉ =  ݈݁݊݅ ݈݀݁݅ݕ ݂݋ ℎݐ݃݊݁ܮ

For the entire system, the total internal work done is the sum of the 
contributions from all yield lines. 
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Ex1: Determine the load capacity of the one-way uniformly loaded (ݓ) 
simply supported slab shown in Fig. using the method of virtual work. The 
resisting moment of slab in (m). 

Solution 

௘ݓ = ݓ ∝ ଶܮ ∗
ߜ
2 

௘ݓ = ݓ ∝ ܮ ∗
ܮ
2
∗
ߜ
2

+ ݓ ∝ ܮ ∗
ܮ
2
∗
ߜ
2

 

௜ݓ = 2݉ ∝ ∅ܮ = ݉ ∝ ∅ܮ + ݉ ∝ ∅ܮ
= 4݉ ∝  ߜ

௘ݓ =  ௜ݓ

ݓ ∝ ଶܮ ∗
ߜ
2

= 4݉ ∝  ߜ

݉ =
ଶܮݓ

8  
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Ex 

௘ݓ = ݓ ∗ (∝ ࡸ ∗ (ࡸࣅ ∗
ࢾ
૛ + ࢝ ∗∝ ࡸ ∗ ࡸ) − (ࡸࣅ ∗

ࢾ
૛ = ࢝ ∝ ૛ࡸ

ࢾ
૛ 

ଵߠ =
ߜ
ܮߣ ଶߠ        ,          =

ߜ
ܮ −  ܮߣ

௜ݓ = ݉ ∝ ࡸ ∗ ૚ࣂ ࢓+ ∝ ૛ࣂࡸ = ࢓ ∝ ૚ࣂ)ࡸ + (૛ࣂ = ࢓

∝ ൬ࡸ
ߜ
ܮߣ +

ߜ
ܮ −  ൰ܮߣ

௘ݓ =  ௜ݓ

࢝ ∝ ૛ࡸ
ࢾ
૛

= ࢓ ∝ ൬ࡸ
ߜ
ܮߣ

+
ߜ

−1)ܮ  ൰(ߣ

݉ =
ଶܮݓ

2
(1−  ߣ(ߣ

߲݉
ߣ߲ = 0 =

ଶܮݓ

4
(1 −  (ߣ2

ߣ =
1
2 

݉ =
ଶܮݓ

8  
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For two-way slab for 

Orthotropic moment capacities (݉௫ ,݉௬) 

- Orthotropic 
- Isotropic 

 

For two-way  slab orthotropic moment capacities (݉௫ ,݉௬) the internal 
work is 

௜ݓ = ∑൫݉௫ ∗ ݔ ∗ ௫ߠ +݉௬ ∗ ݕ ∗  ௬൯ߠ
Where ݉௫ =ultimate moment per unit length in the direction of x-axis 

Ex:-The slab shown is simply supported and it is orthotropic reinforced and 
loaded by uniformly distributed load find the moment capacity of the slab. 
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Solution 

஻ߠܯ∑ = ∑൫ܯ௫ ∗ ௫ߠ + ௬ܯ ∗ ௬൯ߠ = ݉ߤ ∗ ܮ ∗
1
 ܮߚ

஺ߠܯ∑ = ∑൫ܯ௫ߠ௫ + ௬൯ߠ௬ܯ = ݉ ∗ ܮ ∗
2
ܮߙ

 

஺,஻,஼,஽ߠܯ∑ = 

ߜݓ∑ =
ܮߙݓ

2 ∗ (1− (ߚ2 ∗ ܮ ∗
1
2 +

ܮߙݓ
2 ∗ (1 − (ߚ2 ∗ ܮ ∗

1
2

+ ൬ܮߚݓ ∗
ܮߙ
2 ∗

1
3൰ ∗ 4 + ൬ݓ ∗

ܮߚܮߙ
2 ∗

1
3൰ ∗ 2 

or   ∑ߜݓ = −1)ܮߙݓ ܮ(ߚ2 ∗
1
2

+ ൬ܮߙݓ ∗ ܮߚ ∗
1
3
൰ ∗ ܮ

= ଶܮߙݓ ൬
2
3
ܮߚ +

1 − ߚ2
2

൰… … … … … . .  (ܫܫ)

ߠܯ∑ =  ߜݓ∑

݉ =
1

12 ∗ ݓ ∗ ଶܮଶߙ ∗ ቆ
ߚ3 − ଶߚ2

ߚ2 + ଶቇߙߤ →
߲݉
ߚ߲ = 0 

ߚ3 − ଶߚ2

ߚ2 + ଶߙߤ =
3− ߚ4

2  

ଶߚ4 + ߚଶߙߤ4 − ଶߙߤ3 = 0 

ߚ =
1
2 ቂඥ3ߙߤଶ + ସߙଶߤ −  ଶቃߙߤ

∴ ݉ =
1

24
ଶܮଶߙݓ ቂඥ3 + ଶߙߤ − ቃߤඥߙ

ଶ
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Ex11:- 

Using yield line theory of analysis fined by the method of virtual work the 
relationship between (m) and (ݓ) for simply supported rectangular slab 
with orthotropic moment capacity (݉ߤ,݉) 

Sol 

Case 1 (ݐܽ ߜ ܾ & ܿ = 1) 

 

஺஻ߠܯ∑ = ∑൫ܯ௫ ∗ ௫ߠ + ܮߙ௬൯ߠ௬ܯ = ൬݉ܮߙ ∗
1
൰ܮߚ ∗ 2  

஼ߠܯ∑ = ∑൫ܯ௫ߠ௫ ௬൯ߠ௬ܯ+ = ݉ߤ ∗ ܮߚ2 ∗
1
 ܮߙ

஺,஻,஼ߠܯ∑ = 2݉൬
ߙ
ߚ +

ߚߤ
2 ൰… …  (ܫ)

ߜܹ∑ = −1)ݓ ܮ(ߚ2 ∗ ܮߙ ∗
1
2 + ݓ ∗

ܮߙܮߚ
2 ∗

1
3 ∗ 2 +

ܮߙܮߚ
2 ∗

1
3 ∗ 2 

ߜܹ∑ = ଶܮݓߙ ൬
ߚ2
3 +

1 − ߚ2
2 ൰… . .  (ܫܫ)

ߠܯ∑ =  ߜݓ∑

2݉൬
ߙ
ߚ +

ߚߤ
2 ൰ = ଶܮݓߙ ൬

ߚ2
3 +

1− ߚ2
2 ൰ 
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݉ =
ଶܮݓߙ

12 ∗ ቆ
ߙߚ3 ∗ ߙଶߚ2
ଶߙ + ଶߚߤ ቇ            →

߲݉
ߚ߲ = 0 

ߚ =
1
6
ඨ4

9 + ߛ         ߛ =
ߤ
 ଶߙ

݉ =
ଶܮଶߙݓ

ߤ24 ቎ඨ4 +
ߤ9
ଶߙ − 2቏ 

Case 2 (ݐܽ ߜ ܾ & ܿ = 1) 

 

஺,஻ߠܯ∑ = ∑൫ܯ௫ ∗ ௫ߠ ௬൯ߠ௬ܯ+ = ൬݉ܮߙ ∗
2
ܮ
൰ ∗ 2 

஼ߠܯ∑ = ∑൫ܯ௫ ∗ ௫ߠ ௬൯ߠ௬ܯ+ = ݉ߤ ∗ ܮ ∗
1
 ܮߙߚ

஺,஻,஼ߠܯ∑ = ݉൬4ߙ +
ߤ
…൰ߚߙ … .  (ܫ)

ߜݓ∑ = −1)ݓ ଶܮߙ(ߚ ∗
1
2 ଶܮߙߚݓ+ ∗

1
3 = ଶܮߙݓ ൬

1
2 −

ߚ
8൰ 

ߠܯ∑ =  ߜݓ∑

݉ =
ଶܮߙݓ

12
ቆ

ߚߙ6 − ଶߚߙ2

ߚଶߙ4 + ߤ
ቇ →

߲݉
ߚ߲

= 0 

ߚ =
ߛ
2 ቎ඨ

1
4 +

3
ߛ −

1
2቏ 
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Ex:- for the reinforced concrete isotropic slab shown in Fig. find the 
relationship between the resistance moment (m) and uniform load (ݓ) 
using yield line theory. 

Sol:  

݀ ݐܽ ߜ) = 1) 

ߜݓ∑ =
ܮߙܮ

2
∗ ݓ ∗

1
3

=
ଶܮߙݓ

6
 

ߠܯ∑ = ݉ ∗ ݔ ∗
1
ݕ

+݉ ∗ ݕ ∗
1
ݔ

= ݉൬
ݔ
ݕ +

ݕ
 ൰ݔ

ݔ
ݕ = ߚ → ߚ = ±1 ∴ ߮ = 45௢ 

Ex:- using Y.L theory find the relationship between the moment of 
resistance of the isotropic slab (m) and uniform load (ݓ) for the slab shown 
in Fig. 

 

݀ ݐܽ ߜ → 1 
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Solution 

஺ߠܯ∑ = ∑൫ݔܯ ∗ ݔߠ + ൯ݕߠݕܯ = ݉ ∗ ݔ ∗
1
ݕ

= ݉ ∗
ݔ
ݕ

= ݉ cot(ߠ) 

஻ߠܯ∑ = ∑൫ݔܯ ∗ ݔߠ + ൯ݕߠݕܯ = ݉ ∗ ݔ ∗
1
݀݁

+ ݉ ∗ ݕ ∗
1
݀݃

 

݀݁ = ݂݁ − ݕ = ݔ tan(߰)− ݕ = ݔ tan(߰) − ݔ tan(ߠ) 
݀݃ = ݔ − ݕ cot(߰) = ݕ cot(ߠ)− ݕ cot(߰) = (ߠ)cot)ݕ − cot(߰)) 

஻ߠܯ∑ = ݉ ൤
1

tan(߰) − tan(ߠ) +
1

cot(ߠ) − cot(߰)൨

= ݉ ቈ
1 + tan(߰) cot(ߠ)
tan(߰) − tan(ߠ) ቉ = ݉[cot(߰ −  [(ߠ

஺,஻ߠܯ∑ = ݉(cot(ߠ) + cot(߰ −  ((ߠ

ߜݓ∑ =
1
3 ∗ ݓ ൤

1
2 ∗ ܮߙ ∗ ܮ ∗ sin(߰)൨ =

1
6 ∗ ݓ ∗ ߙ ∗ ଶܮ sin(߰) 

ߠܯ∑ =  ߜݓ∑

݉ =
ߙݓ ∗ ଶܮ ∗ sin(߰)

6[cot(߰ − (ߠ + cot(ߠ)] =
1
ݓ6 ∗ ߙ ∗ ଶܮ ∗ sin(ߠ) sin(߰ −  (ߠ

߲݉
ߠ߲ = 0 

cos(ߠ) ∗ sin(߰ − (ߠ = sin(ߠ) ∗ cos( ߰ −  (ߠ
tan(ߠ) = tan(߰ −  (ߠ

∴ ߠ =
1
2߰ 

݉ =
1
6 ∗ ݓ ∗ ߙ ∗ ଶܮ ∗ sin ൬

߰
2൰ 
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Ex:- 

 نفرض العزم السالب كنسبة من العزم الموجب

 

஺ߠܯ∑ = ∑൫ݔܯ ∗ ݔߠ + ܣ൯ݕߠݕܯ = (݉ + ݅1݉) ∗ ߙ ∗ ܮ ∗
1
ܮߚ

= (1 + ݅1) ∗
ߙ݉
ߚ

= ߙ݉) + (ߙ1݉݅ ∗
1
ߚ

 

஻ߠ∑ = ∑൫ݔܯ ∗ ݔߠ + ൯ݕߠݕܯ = (݉ + ݅2݉) ∗ ܮߙ ∗
1

(1 − ܮ(ߚ

= (1 + ݅2) ∗
ߙ݉

1 − ߚ
= ܮߙ݉) + (ܮߙ2݉݅ ∗

1
(1 −  ܮ(ߚ

஺,஻ߠܯ∑ = ൬݉ߙ
1 + ݅ଵ
ߚ +

1 + ݅ଶ
1 − …൰ߚ … …  (ܫ)
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ߜݓ∑ =
1
2 ∗ ݓ ∗ ߙ ∗  ଶܮ

ߠܯ∑ =  ߜݓ∑
ݓ ∗ ߙ ∗ ଶܮ

2 = ݉ߙ  ൬
1 + ݅ଵ
ߚ +

1 + ݅ଶ
1 −  ൰ߚ

ଵ݅ ܨܫ = ݅ଶ 

݉ =
ଶܮݓ

4 ∗ ߚ) −  (ଶߚ

߲݉
ߚ߲ = 0 → ߚ =

1
2 

∴ ݉ =
ଶܮݓ

16  
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Ex9:- isotropic  slab  ݉ = −݉ = +݉ 

 

ܽ = ܮݔ sin(60) = 0.8 ∗  ܮݔ

஺ߠܯ∑ = ൬݉ܮ ∗
1
ܽ൰ ∗ 4  

஻ߠܯ∑ = ൤(݉ܮ + (ܮ݉ ∗
1

ܮ sin(60)൨ ∗ 2 

ߜݓ∑ = 4 ൤ݓ ∗
ܽܮ
2 ∗

1
3൨ + 2 ൤(2ܮ − (ܮݔ2 ∗ ܮ sin(60) ∗ ݓ ∗

1
2൨

+ 4 ቈ൬ܮݔ −
ܮ
2൰ ∗

(60)݊݅ݏ ܮ
2 ∗

1
3቉ 
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ߜݓ∑ = 4 ቈ
ܮ ∗ ܮ sin(60)

2 ∗
1
3 ∗ ቉ݓ

+ ଶܮ)]2 sin(60) ∗ ଶܮݔ sin(60))ݓ]

+ 4 ቎
ଶܮݔ sin(60) − ௅మ ୱ୧୬(଺଴)

ଶ
6 ∗  ቏ݓ

ߠܯ∑ =
4݉

sin(60) ൤
1 + ݔ
ݔ ൨ 

ߠܯ∑ =  ߜݓ∑
ଶܮ sin(60)

3 ∗ ݓ ∗ (5 − (ݔ2 =
4݉

sin(60) ൤
1 + ݔ
ݔ ൨ 

ݓ =
16݉(1 + (ݔ
ݔଶ(5ܮ −  (ଶݔ2

ݓ߲
ݔ߲ = 0 → ݔ = 0.87 

∴ ݓ =  ଶܮ/݉ 10.54
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Ex10:- 

A uniformly loaded isotropic reinforced slab is supported as shown 
in Figure. Using yield line theory to analysis this system determine 
the collapse load (ݓ௨). The plastic moment of the reinforcement 
per meter width of slab for top and bottom reinforcement are 
 .respectively (௡ܯ)&(௡ܯ1.5)

 
Sol 

ଵߜ
ଶߜ

=
4
1 

ଶߜ =  ଵߜ0.25
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 Exterior work 
ߜݓ∑ = ܾ݈ܽݏ ݂݋ ݉ݑ݈݋ݒ

= ௡ݓ ൤൬8 ∗ 8 ∗ 1 ∗ 1 ∗
1
3൰ − 4 ൬

2 ∗ 2
2 ∗ 0.25 ∗

1
3൰൨

=  ௡ݓ20.66
 Interior work  

ߠܯ∑ = ௡ܯ)] ∗ 2 ∗ 3) + ௡ܯ1.5) ∗ 4)] ∗
1
4 ∗ 4 =  ௡ܯ12

ߠܯ∑ =  ߜݓ∑
௡ݓ20.66 =  ௡ܯ12
௡ݓ =  ௡ܯ0.58

Ex11:- 

For the R.C isotropic slab shown in Figure find the concentrated 
collapse load (P) which is applied at the center of slab use +ܯ =
 ܯ−

Sol 

Case 1 

௘ݓ = ߜ)ܲ = 1) = ܲ 

௜ݓ = ݉(݈) ∗
1
௟
ଶ

∗ 4 = 16 ݉ 

௘ݓ = ௜ݓ → ܲ = 16 ݉ 
Case 2 

௘ݓ = ߜ)ܲ = 1) = ܲ 

௜ݓ = (ݎߨ2)݉ ∗
1
ݎ + (ݎߨ2)݉ ∗

1
ݎ

=  (ߨ4)݉
௘ݓ = ௜ݓ → ܲ = ߨ4݉ = 12.566 ݉ 
∴ ܲ = 12.566 ݉ 
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Orthotropic reinforcement and skewed yield lines 

 

 Bars in the x-direction are at spacing (U) and have moment 
resistance ݉௫ per unit length about the x-axis 

 The resisting moment per bar about the x-axis is (݉௫ܷ) and 
the component of that resistance about the ∝-axis is (݉௫ܷ ∗
cos (∝)) 

 The resistance moment per unit length along the ∝-axis 
provided by the y-direction bars is therefore  

݉ ∝ ݕ =
݉௫ܷ ܿݏ݋(∝)

4/ cos(∝) = ݉௫ cosଶ(∝) 

݉ ∝ ݔ = ݉௬ sinଶ(∝) 
For the combined sets of bars the resisting moment per unit 
length measured along the ∝-axis  

݉∝ = ݉௫ cosଶ ∝ + ݉௬ sinଶ ∝ 
For special case where ݉௫ = ݉௬ = ݉ 

݉∝ = ݉(cosଶ(∝) + sinଶ(∝)) = ݉ 
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Plastic Analysis 

௉ܯ =Plastic moment  

Exterior work  

௘ݓ = ܲ ∗  ߜ

Internal work  

௜ݓ = ௉ܯ ∗ ߠ = ௉ܯ ∗
ߜ
݈  

௘ݓ =  ௜ݓ

ܲ ∗ ߜ = ௉ܯ  ∗
ߜ
݈ → ௉ܯ = ܲ ∗ ݈ 

 

 

 

Ex11 

௘ݓ =  ߜܲ

௜ݓ = ௉ܯ ∗ ߠ2 = ௉ܯ ∗ ൬
ߜ
݈/2൰ ∗ 2

= ௉ܯ4 ∗
ߜ
݈  

௘ݓ =  ௜ݓ

ߜܲ = ௉ܯ4 ∗
ߜ
݈  

௉ܯ =
݈݌
4  
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Ex12:- 

௘ݓ =  ߜ݈ݓ

௜ݓ = ௉ܯ ∗ ߠ = ௉ܯ ൬
ߜ
݈/2൰

= ௉ܯ2 ∗
ߜ
݈  

௘ݓ = ௜ݓ  

ߜ݈ݓ = ௉ܯ2 ∗
ߜ
݈  

௉ܯ =
ଶ݈ݓ

2  

 

 

 

 

 

Ex 13 

௘ݓ = ቀ௪௟
ଶ
∗ ቁߜ ∗ 2 

௜ݓ = ௉ܯ ∗ ߠ2 = ௉ܯ ∗ 2 ൬
ߜ
݈/4൰ = ௉ܯ8

ߜ
݈  

௉ܯ =
ଶ݈ݓ

8  
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Ex14: 

௘ݓ = ቀ௪௟
ଶ
∗ ቁߜ ∗ 2 

௜ݓ = ௉ܯ
ି ∗ ߠ + ௉ܯ

ି ∗ ߠ + ௉ܯ
ା(2ߠ) = ߠ௉ܯ4 = ௉ܯ4 ൬

ߜ
݈/4൰

= ௉ܯ16 ∗
ߜ
݈  

௘ݓ =  ௜ݓ

ߜ݈ݓ = ௉ܯ16 ∗
ߜ
݈  

௉ܯ =
ଶ݈ݓ

16  
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Ex15 

௘ݓ = ܲ ∗  ߜ

௜ݓ = ߠ௉ܯ4 = ௉ܯ4 ൬
ߜ
݈/2൰ 

௘ݓ = ௜ݓ  

ܲ ∗ ߜ = ௉ܯ8
ߜ
݈  

௉ܯ =
݈݌
8  

 

 

Ex16 

௘ݓ = ܲ ∗ ߜ + ቀ௪௟
ଶ
∗ ఋ
ଶ
ቁ ∗ 2 

௜ݓ = ௉ܯ4 ∗
ߜ
݈/2 = ௉ܯ8

ߜ
݈  

௘ݓ = ௜ݓ  

ܲ ∗ ߜ + ൬
݈ݓ
2 ∗

ߜ
2൰ ∗ 2 = ௉ܯ8

ߜ
݈  
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௉ܯ =
ଶ݈ݓ

16 +
݈݌
8  
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Ex 17 

Positive moment =  ௡ܯ

Negative moment=  ௡ܯ2

Sol 

 

 

 

 

External work  

ߜݓ∑ = ݈ ∗
݈ݔ
2 ∗ ݓ ∗

1
3 +

݈(1 − ݈(ݔ
2 ∗

1
3 ∗ ݈ݓ =

ଶ݈ݓ

6 = ݓ ∗
݈ ∗ ݈

2 ∗
1
3 

Internal work 

ߠܯ∑ = ௡ܯ)] ∗ (݈ݔ + ௡ܯ2) ∗ ݈)] ∗
1

݈(1 − (ݔ + ௡ܯ] ∗ ݈(1 − [(ݔ ∗
1
݈ݔ

= ݔ)௡ܯ + 2) ∗
1

1 − ݔ +
(1 − ௡ܯ(ݔ

ݔ

= ௡ܯ ∗
ଶݔ) + ݔ2 + 1 − ݔ2 + (ଶݔ

ݔ − ଶݔ  

ߠܯ∑ =  ߜݓ∑

௡ܯ ∗
ଶݔ2) + 1)
ݔ − ଶݔ =

ଶ݈ݓ

6  

௡ݓ =
௡ܯ6

݈ଶ ∗
ଶݔ2) + 1)
ݔ − ଶݔ  

ݓ߲
ݔ߲ = 0 → ݔ = 0.36 

௡ݓ =
32.78
݈ଶ  ௡ܯ
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Ex 18 

ߜݓ∑ = ݓ ൤ܮ ∗ ܮ ∗
1
3൨ =

ଶܮݓ

3  

ߠܯ∑ = 4݉ି ∗ ܮ ∗
1
2/ܮ + 4݉ ∗ ܮ ∗

1
2/ܮ = 8݉ + 8݉ = 16݉ 

ߜݓ∑ =  ߠܯ∑
ଶܮݓ

3 = ݓ           16݉ =
48
ଶܮ ∗ ݉ 

Ex19 

ߜݓ∑ = ݓ ቎൬݇ܮ ∗
ܮ − ܮ݇

2 ∗ 4 ∗
1
2൰ + ቌ8 ∗

௅ି௞௅
ଶ

∗ ௅ି௞௅
ଶ

2 ∗
1
3ቍ቏

= ݓ ቈ݇ܮଶ − ݇ଶܮଶ +
ଶܮ − ଶܮ2݇ + ݇ଶܮଶ

3 ቉

= ݓ ቈ
ଶܮ

3 − 2 ∗
ଶܮ݇

3 −
2
3 ݇

ଶܮଶ +  ଶ቉ܮ݇

ߠܯ∑ = ቎4݉ି ∗ ܮ ∗
1

௅ି௞௅
ଶ

቏+ ቎8݉ ∗
ܮ − ܮ݇

2 ∗
1

௅ି௞௅
ଶ

቏

=
8݉ + 8݉ − 8݉݇

1 − ݇ = ݉
16 − 8݇

1 − ݇  

ߜݓ∑ =  ߠܯ∑

ݓ ቈ
ଶܮ

3 − 2 ∗
ଶܮ݇

3 −
2
3 ݇

ଶܮଶ + ଶ቉ܮ݇ = ݉
16 − 8݇

1 − ݇  

ݓ =
3݉
ଶܮ ∗

16 − 8݇
1 − 2݇ଷ − 3݇ଶ  

16 + 32݇ଷ − 48݇ଶ − 8݇ = 0 
݇(32݇ଶ − 48݇ + 8) = 0 
݇ = 0.191 


