Mechanical Properties of materials

Stress (σ) : is the measurement of diffusion of forces in mass or body , or force per unite area

Stress(σ) = Force /Area = F/A , kg/cm², N/mm², lb/in²

There are two type of stress :-

- Compressive stresses when the load or force is compressive force.

- Tensile stresses when the load or force is tensile force.

Strength:- Strength is the greatest stress that a substance can bear under external forces (loads)without destruction . Depending upon the type of load applied the strength can be tensile , compressive or shear

Strain (ϵ):- is the measurement of deformation in the mass or body

Strain (ϵ) = Length change /Length = $\Delta L /L$ 10⁻⁶, Micro Strain Strain (ϵ) = Volume change / Volume = $\Delta V / V$ 10⁻⁶ Micro strain

Elasticity : it is property of a material to regain its original shape after deformation when the external force are removed

Plasticity: it is the property of a material which retains the deformation produced under load permanently

Relationship between tensile stress & strain for sample from wrought iron

Modulus of Elasticity(E): is stresses of unite strain in same direction of load. The elastic modulus is a measure of the ability to resist deformation . Modulus of Elasticity(E) = Stress/Strain = σ/ϵ kg/cm², N/ mm², lb/in²

Poisson's Ratio : is ratio of lateral strain to the longitudinal strain for sample carry axial load

Poisson's Ratio(v) = Lateral Strain /Longitudinal Strain = ε_x / ε_y unite less

Hooks Law

We can find the strain in any direction when we know the stresses applied on the body at all direction .

 $\begin{aligned} & \epsilon_x = \sigma_x / E - \upsilon \ \sigma_y / E - \upsilon \ \sigma_z / E \\ & \epsilon_y = \sigma_y / E - \upsilon \ \sigma_x / E - \upsilon \ \sigma_z / E \\ & \epsilon_z = \sigma_z / E - \upsilon \ \sigma_x / E - \upsilon \ \sigma_y / E \end{aligned}$

Creep :is strain under sustain stress , or characteristic of strain in material with the effect of temperature and time under sustain stress

Modulus of Rupture: is strength of material under indirect tensile loads ,calculated by using the following equation for one point load or two point load .

kg/cm², N/ mm², lb/in²

Where :

M.O.R = Modulus of rupture in MPa

P= Maximum applied load indicating by the testing machine

- L = Span length in mm
- **B**= Width of specimen in mm
- **d** = **Depth** of specimen in mm

Modulus of Rigidity (shear modulus) : is the ratio between shear stress to shear strain

$$G = E/2(1+v)$$
 kg/cm², N/mm²,

lb/in²

•	$\sigma = F/A$	Eq No. 1
•	$\varepsilon = \Delta L / L$	Eq No. 2
•	$E = \sigma / \epsilon$	Eq No.3

Substituted the value of (σ) from eq.(1) and the value of (ϵ) from eq.(2) into eq.(3)

 $E = (F/A) / (\Delta L / L)$ $\Delta L = (F^*L) / (A^*E)$

Eq No.4