• The General Bearing Capacity Equation

To account for all shortcomings in previous equation, Meyerhof (1963) suggested the following form of the general bearing capacity equation:

$$q_u = c' N_c F_{cs} F_{cd} F_{ci} + q N_q F_{qs} F_{qd} F_{qi} + \frac{1}{2} \gamma B N_\gamma F_{\gamma s} F_{\gamma d} F_{\gamma i}$$

In this equation:

c' = cohesion q = effective stress at the level of the bottom of the foundation $\gamma = \text{ unit weight of soil}$ B = width of foundation (= diameter for a circular foundation) $F_{cs}, F_{qs}, F_{\gamma s} = \text{ shape factors}$ $F_{cd}, F_{qd}, F_{\gamma d} = \text{ depth factors}$ $F_{ci}, F_{qi}, F_{\gamma i} = \text{ load inclination factors}$ $N_c, N_q, N_{\gamma} = \text{ bearing capacity factors}$

☑ Note that the original equation for ultimate bearing capacity is derived only for the plane-strain case (i.e., for continuous foundations). The shape, depth, and load inclination factors are empirical factors based on experimental data.

Factor	Relationship	Reference
Shape	$F_{cs} = 1 + \left(\frac{B}{L}\right) \left(\frac{N_q}{N_c}\right)$	DeBeer (1970)
	$F_{qs} = 1 + \left(\frac{B}{L}\right) \tan \phi'$	
	$F_{\gamma s} = 1 - 0.4 \left(\frac{B}{L}\right)$	
Depth	$\frac{D_f}{B} \le 1$	Hansen (1970)
	For $\phi = 0$:	
	$F_{cd} = 1 + 0.4 \left(\frac{D_f}{B}\right)$	
	$F_{qd} = 1$ $F_{\gamma d} = 1$	
	For $\phi' > 0$:	
	$F_{cd} = F_{qd} - \frac{1 - F_{qd}}{N_c \tan \phi'}$	
	$F_{qd} = 1 + 2 \tan \phi' (1 - \sin \phi')^2 \left(\frac{D_f}{B}\right)$	
	$F_{\gamma d} = 1$ $D_f > 1$	
	$\frac{1}{B} > 1$	
	For $\phi = 0$:	
	$F_{cd} = 1 + 0.4 \underbrace{\tan^{-1}\left(\frac{D_f}{B}\right)}_{\text{radians}}$	
	$F_{qd} = 1$	
	$F_{\gamma d} = 1$	
	For $\phi > 0$: $1 - F_{qd}$	
	$F_{cd} = F_{qd} - \frac{1}{N_c \tan \phi'}$	
	$F_{qd} = 1 + 2 \tan \phi' (1 - \sin \phi')^2 \tan^{-1} \left(\frac{D_f}{B}\right)$	
	radians	
Inclination	$F_{\gamma d} = 1$ $F_{ci} = F_{qi} = \left(1 - \frac{\beta^{\circ}}{90^{\circ}}\right)^2$	Meyerhof (1963); Hanna and Meyerhof (1981)
	$F_{\gamma i} = \left(1 - \frac{\beta}{\phi}\right)$	• • •
	β = inclination of the load on the foundation with respect to the vertical	

Table 3.4 Shape, Depth and	Inclination Factors (DeBeer	(1970); Hansen (1970); Meyerhof (1963);
Meyerhof and Hanna (1981))			

<u>Effect of Soil Compressibility</u>

Still the above equation does not take into account the change of failure mode in soil (i.e., local shear failure). The change of failure mode is due to soil compressibility; to account for which Vesic (1973) proposed the following modification of Eq:

$$q_u = c' N_c F_{cs} F_{cd} F_{cc} + q N_q F_{qs} F_{qd} F_{qc} + \frac{1}{2} \gamma B N_\gamma F_{\gamma s} F_{\gamma d} F_{\gamma c}$$
(3.27)

In this equation, F_{cc} , F_{qc} , and $F_{\gamma c}$ are soil compressibility factors.

The soil compressibility factors were derived by Vesic (1973) by analogy to the expansion of cavities. According to that the ory, in order to calculate F_{cc} , F_{qc} , and $F_{\gamma c}$, the following steps should be taken:

Step 1. Calculate the *rigidity index*, I_r , of the soil at a depth approximately B/2 below the bottom of the foundation, or

$$I_r = \frac{G_s}{c' + q' \tan \phi'} \tag{3.28}$$

where

 G_s = shear modulus of the soil

q = effective overburden pressure at a depth of $D_f + B/2$

Step 2. The critical rigidity index, $I_{r(cr)}$, can be expressed as

$$I_{r(cr)} = \frac{1}{2} \left\{ \exp\left[\left(3.30 - 0.45 \frac{B}{L} \right) \cot\left(45 - \frac{\phi'}{2} \right) \right] \right\}$$

Step 3. If $I_r \ge I_{r(cr)}$, then

$$F_{cc} = F_{qc} = F_{\gamma c} = 1$$

However, if $I_r < I_{r(cr)}$, then

$$F_{\gamma c} = F_{qc} = \exp\left\{\left(-4.4 + 0.6\frac{B}{L}\right)\tan\phi' + \left[\frac{(3.07\sin\phi')(\log 2I_r)}{1+\sin\phi'}\right]\right\}$$

. For $\phi = 0$,

$$F_{cc} = 0.32 + 0.12 \frac{B}{L} + 0.60 \log I_r$$

For $\phi' > 0$,

$$F_{cc} = F_{qc} - \frac{1 - F_{qc}}{N_q \tan \phi'}$$