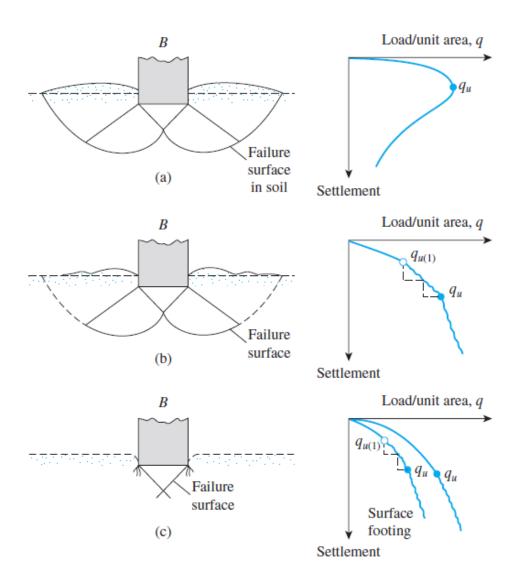
Shallow Foundations

Ultimate Bearing Capacity

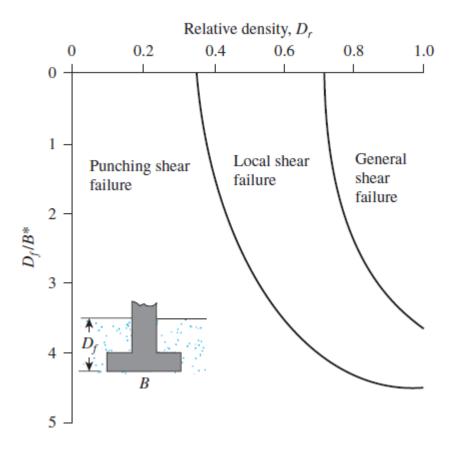
■ Shallow foundation

- Spread footing
- Combined
- Continuous
- Mat foundation

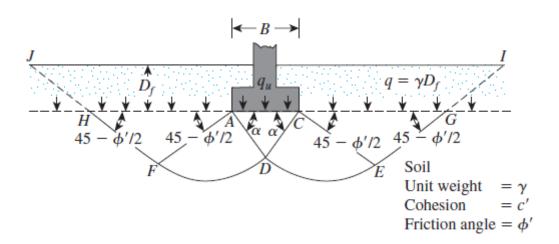
■ Deep Foundation


- Piles
- Piers
- Caissons

Requirements for stable foundation


- Must be properly located with respect to any future influence which could adversely affect its performance
- 2. Must be safe against failure
- 3. Must not stele or deflect sufficiently to damage the structure.

Bearing Capacity of Soil is the capability of soil to support load without shear failure.


• Modes of failure

- (a) General shear failure
- (b) local shear failure
- (c) punching shear failure
- The nature of failure in soil is function of $(D_r, \frac{D_f}{B}, \frac{B}{L})$. This function can be illustrated as shown in figure below (Vesic, 1963)

• Terzaghi's Bearing Capacity Theory

$$q_u = c'N_c + qN_q + \frac{1}{2}\gamma BN_{\gamma}$$
 (continuous or strip foundation)

Modification of Bearing Capacity Equations for Water Table

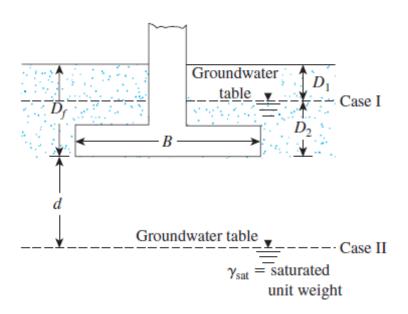
Case 1. If the water table is located so that $0 \le D_1 \le D_f$, the factor q in the bearing capacity equations takes the form

$$q = \text{effective surcharge} = D_1 \gamma + D_2 (\gamma_{\text{sat}} - \gamma_w)$$
 (3.16)

where

 $\gamma_{\text{sat}} = \text{saturated unit weight of soil}$

 $\gamma_w = \text{unit weight of water}$


Also, the value of γ in the last term of the equations has to be replaced by $\gamma' = \gamma_{\rm sat} - \gamma_w$.

Case II. For a water table located so that $0 \le d \le B$,

$$q = \gamma D_f \tag{3.17}$$

In this case, the factor γ in the last term of the bearing capacity equations must be replaced by the factor

$$\overline{\gamma} = \gamma' + \frac{d}{B} \left(\gamma - \gamma' \right) \tag{3.18}$$

