*Q1*) For the circuit shown in figure below:

*I*) Verify that  $Y = \overline{ABC}$ .

**II**)Determine the Fan-Out.

Assume  $\beta_{min.}=25$ , V<sub>BEsat.</sub>=0.8V, V<sub>CEsat.</sub>=0.2V, & V<sub>BE</sub>=0.7V.



*Q2*) Show that the output transistor of the *DTL* gate of figure below goes into saturation when all inputs are *HIGH*. Assume that  $h_{FE}=20$ ,  $V_{BE}=0.7V$ ,  $V_{BEsat}=0.8V$ , &  $V_{CEsat}=0.2V$ .



Dr. Ehab AL-Hialy

- *Q3*) Connect the output *Y* of the *DTL* gate shown in figure below to *N* inputs of other similar gates. Assume that the output transistor is saturated. Let  $h_{FE}$ =20,  $V_{BE}$ =0.7V,  $V_{BEsat}$ =0.8V, &  $V_{CEsat}$ =0.2V.
- I) Calculate the current in the  $2k\Omega$  resistor.
- **II**) Calculate the current coming from each input connected to the gate.
- III) What is the Fan-Out of the gate?



 $\overline{Q4}$ ) For the NAND gate shown in figure below. Determine the Fan-Out and calculate the average power dissipated by the gate. Assume  $\beta_{min.}=25$ ,  $V_{BEsat.}=0.8V$ ,  $V_{CEsat.}=0.2V$ , &  $V_{BE}=0.7V$ .



Dr. Ehab AL-Hialy