Chapter one The Vectors

1-11 The ∇ Operator

The ∇ is a differential operator can be written in it's component as in the following:

$$\nabla = \hat{i} \nabla_x + \hat{j} \nabla_y + \hat{k} \nabla_z$$

1-11-1 Scalar Product of ∇ operator

If \vec{A} is a vector

$$\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$$

Then

$$\nabla \cdot \vec{A} = (\hat{i}\nabla_{x} + \hat{j}\nabla_{y} + \hat{k}\nabla_{z}) \cdot (A_{x}\hat{i} + A_{y}\hat{j} + A_{z}\hat{k})$$

$$= \nabla_{x}A_{x} + \nabla_{y}A_{y} + \nabla_{z}A_{z} = \frac{\partial A_{x}}{\partial t} + \frac{\partial A_{y}}{\partial t} + \frac{\partial A_{z}}{\partial t}$$

The quantity $\nabla \cdot \vec{A}$ called the divergence \vec{A} (div \vec{A})

1-11-2 Vector Product of ∇ Operator

For
$$\nabla = \hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z}$$
; $\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$ We define the vector

product of $\nabla x \vec{A}$ as:

$$\nabla x \vec{A} = \hat{i} \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \right) + \hat{j} \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} \right) + \hat{k} \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \right)$$

The vector quantity $\nabla x \vec{A}$ called the curl \vec{A}

Chapter one The Vectors

Example(1)

What is the angle between $\vec{A} = 3\hat{i} + 7\hat{k}$ and $\vec{B} = -\hat{i} + 2\hat{j} + \hat{k}$ (dot product)?

Solution:

$$A_x = 3$$
 $B_x = -1$
 $A_y = 0$ $B_y = 2$
 $A_z = 7$ $B_z = 1$

$$\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z$$

$$= 3(-1) + 0(2) + 7(1)$$

$$= 4$$

$$|A| = \sqrt{(A_x)^2 + (A_y)^2 + (A_z)^2}$$

$$= \sqrt{3^2 + 0^2 + 7^2}$$

$$= \sqrt{58}$$

$$|B| = \sqrt{(B_x)^2 + (B_y)^2 + (B_z)^2}$$

$$= \sqrt{-1^2 + 2^2 + 1^2}$$

$$= \sqrt{6}$$

$$\vec{A} \cdot \vec{B} = |A| |B| \cos \theta$$

$$\cos \theta = \frac{\vec{A} \cdot \vec{B}}{AB} = \frac{4}{\sqrt{58}\sqrt{6}}$$

 $\theta = 77.6^{\circ}$ { the angle between two vector }

Question (1)

For vectors $\vec{A} = 3\hat{i} - 4\hat{j} + 7\hat{k}$ and $\vec{B} = -\hat{i} + \hat{j} + 4\hat{k}$ find $\vec{A} + \vec{B}$, $\vec{A} - \vec{B}$, $\vec{A} \times \vec{B}$, $\vec{A} \cdot \vec{B}$??