TECHNIQUES OF
INTEGRATION

OVERVIEW The Fundamental Theorem connects antiderivatives and the definite integral.
Evaluating the indefinite integral
[ e

is equivalent to finding a function F such that F'(x) = f(x), and then adding an
arbitrary constant C:

/f(x)dx = F(x) + C.

In this chapter we study a number of important techniques for finding indefinite
integrals of more complicated functions than those seen before. The goal of this chapter
is to show how to change unfamiliar integrals into integrals we can recognize, find in a
table, or evaluate with a computer. We also extend the idea of the definite integral to
improper integrals for which the integrand may be unbounded over the interval of inte-
gration, or the interval itself may no longer be finite.

Basic Integration Formulas

To help us in the search for finding indefinite integrals, it is useful to build up a table of
integral formulas by inverting formulas for derivatives, as we have done in previous chap-
ters. Then we try to match any integral that confronts us against one of the standard types.
This usually involves a certain amount of algebraic manipulation as well as use of the Sub-
stitution Rule.

Recall the Substitution Rule from Section 5.5:

/ f(g(x))g'(x) dx = / f(u) du

where u = g(x) is a differentiable function whose range is an interval / and f is continuous
on /. Success in integration often hinges on the ability to spot what part of the integrand
should be called u in order that one will also have du, so that a known formula can be
applied. This means that the first requirement for skill in integration is a thorough mastery of
the formulas for differentiation.

553
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554 Chapter 8: Techniques of Integration

Table 8.1 shows the basic forms of integrals we have evaluated so far. In this section
we present several algebraic or substitution methods to help us use this table. There is a
more extensive table at the back of the book; we discuss its use in Section 8.6.

TABLE 8.1 Basic integration formulas

1. /du =u+C 13. cotudu = In [sinu| + C

= -1 +
2. /kdu =jku+ C (any number k) nfescul +C

14.
/(du+dv) /du-l—/dv

e'du =e"+ C

3.
15. adu—m+c (a>0,a#1)
4. —n+1+C (n# —1)
du 16. sinhudu = coshu + C
5. 7=ln|u| + C
17. coshudu = sinhu + C

\\\\ \

6. sinudu = —cosu + C
18. / = sin”! <u> + C
7. cosudu = sinu + C Va “
19. tanf1 <Z> + C
=tanu + C
5 20. / = ;sec! % + C
csccudu = —cotu + C uNu

°

\\\\\\\\\
S
I

21.

e
secutanudu = secu + C /m sinh <a>+C (a >0)

—
S

22.

11. cscucotudu = —cscu + C

12.

tanudu = —In |cosu| + C

In|secu| + C

We often have to rewrite an integral to match it to a standard formula.

EXAMPLE 1 Making a Simplifying Substitution

Evaluate

Video

XX =-9

Vx? —9x + 1
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8.1 Basic Integration Formulas 555

Solution
de — du_ >
5 = u=x"—9% +1,

m \/l; du = (2x — 9) dx.
= /u_l/2 du
_ ﬂ +C Table 8.1 Formula 4,
- (_1/2) +1 withn = —1/2
=u'?+C

=2Vx?—-9% +1+C =

EXAMPLE 2  Completing the Square

Evaluate

dx
/ \/8x—x2.

Solution We complete the square to simplify the denominator:
8x —x2 = —(x> — 8) = —(x* — 8& + 16 — 16)
—(x* = 8x + 16) + 16 = 16 — (x — 4)°.

Then

a=4u=(x—4),

du
\/m du = dx

.1 u
sin (a> +C Table 8.1, Formula 18

= sin”! (x Z 4) + C. =

EXAMPLE 3  Expanding a Power and Using a Trigonometric Identity

Evaluate

Video

/(secx + tan x)? dx.

Solution We expand the integrand and get
(secx + tanx)> = sec’x + 2secxtanx + tan’x.

The first two terms on the right-hand side of this equation are familiar; we can integrate
them at once. How about tan® x? There is an identity that connects it with sec? x:

tan’x + 1 = sec’x, tan’x = sec’x — 1.
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556 Chapter 8: Techniques of Integration

We replace tan® x by sec>x — 1 and get

/(secx + tanx)?dx = / (sec’x + 2secxtanx + sec’x — 1) dx

=2/se02xdx+2/secxtanxdx—/1dx

=2tanx + 2secx —x + C. |

EXAMPLE 4  Eliminating a Square Root

Evaluate

/4
/ V1 + cosdxdx.
0

Solution We use the identity

cos’f = w, or 1 + cos20 = 2cos?6.

With 6 = 2x, this identity becomes
1 + cos4x = 2 cos® 2x.

Hence,

/4 /4
/ V1 +cos4xdx=/ \[2\/cosz2xdx
0 0

/4 5 _
= \/2/ |cos 2x| dx Vi = Jul
0

/4 On [0, 7/4], cos 2x = 0,
= \/2/ cos 2x dx S0 |cos 2x| = cos 2x.
0

/4 Table 8.1, Formula 7, with

. \/ sin 2x
= 2 |—= u=2xanddu = 2 dx
2 0

2

:\6[;_0]:2_ [

EXAMPLE 5 Reducing an Improper Fraction

. Evaluate
Video 5
3x- — x dic
3x + 2 '
| x—3 Solution The integrand is an improper fraction (degree of numerator greater than or
3x + 2)3x2 — Tx equal to degree of denominator). To integrate it, we divide first, getting a quotient plus a
3x? 4 2x remainder that is a proper fraction:
—x 3x% — Ix 6
—9x -6 w+2 Y3t nr
+ 6

Therefore,

3x —Tx . _ B 6 _xr
/wdx—/<x 3+3x+2>dx—2 3x+2In3x +2|+C. =
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8.1 Basic Integration Formulas 557
Reducing an improper fraction by long division (Example 5) does not always lead to

an expression we can integrate directly. We see what to do about that in Section 8.5.

EXAMPLE 6  Separating a Fraction

Evaluate

3+ 2
V1 — x?
Solution We first separate the integrand to get

3x+2 o xdx 2/ dx
\/l—x V1 — x? V1 — x?

In the first of these new integrals, we substitute

u=1-x% = —2xdx, and xdx = —

3 _ xdx (1/2)6{”:_; 0 V2 du
V1 — x2 2
12
- 3” v =-3V1-x+

212

1
Edu.

The second of the new integrals is a standard form,

dx .1
2/=2s1n x + C.
V1 — x?

Combining these results and renaming C; + C, as C gives

3x + 2 .
22 dx = —3V1 —x% + 2sin'x + C. |
V11— x?2

The final example of this section calculates an important integral by the algebraic

technique of multiplying the integrand by a form of 1 to change the integrand into one we
can integrate.

EXAMPLE 7  Integral of y = sec x—Multiplying by a Form of 1

George David Birkhoff
(1884-1944)

Evaluate

/ secx dx.
Solution

- _ secx + tanx
/secxdx—/(SGCX)(l)dx_/secx secx T tanx

Sesz + sec x tanx
= dx
secx + tanx
_ @ u = tanx + secx,
u du = (sec’x + secxtanx) dx
=1In|u| + C = In|secx + tanx| + C. |
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558 Chapter 8: Techniques of Integration

With cosecants and cotangents in place of secants and tangents, the method of Exam-
ple 7 leads to a companion formula for the integral of the cosecant (see Exercise 95).

TABLE 8.2 The secant and cosecant integrals

1. /secudu=1n|secu+tanu| + C

2. /cscudu= —In |cscu + cotu| + C

Procedures for Matching Integrals to Basic Formulas

PROCEDURE EXAMPLE

Making a simplifying 22)6—_9dx = df\}
substitution Vx® = 9x + 1 u
Completing the square Vex — x2= V16 — (x — 4)?

Using a trigonometric (secx + tanx)? = sec’x + 2secxtanx + tan’x
identity = sec’x + 2secxtanx

+ (sec’x — 1)

= 2sec’x + 2secxtanx — 1

Eliminating a square root V1 + cosdx = V2cos?2x = V2 | cos 2x|
. . 3x2 — Tx 6
Redu'cmg an improper 3+ X 3+ 3+ 2
fraction
. . 3x +2 3x 2
Separating a fraction = +
V1i-x2 Vi-x2 V1-x?

secx + tanx

Multiplying by a form of 1 secx = secx*t S

_ sec’x + secxtanx
secx + tanx
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EXERCISES 8.1

Basic Substitutions

Evaluate each integral in Exercises 1-36 by using a substitution to re-
duce it to standard form. 3. / 3Vsinvcos v dv 4. / cot® y csc? y dy
1 16x dx 5 3 cos x dx 5 /l 16x dx 6 /7/3 seczzdz
V8x? + 1 V1 + 3sinx 0 8x?+2 a4 1ADZ
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8.1 Basic Integration Formulas 559

dx dx Trigonometric Identities
7. | ——F—— 8.
Vx(Vx + 1) x = Vx Evaluate each integral in Exercises 43-46 by using trigonometric
identities and substitutions to reduce it to standard form.
9. /cot(3 — 7x) dx 10. /csc (7mx — 1)dx
43, /(secx + cotx)? dx 44, /(cscx — tanx)? dx
cot(3 + In i
11. /eecsc (e’ + 1)do 12. /%dx eraisa
45. /cscxsin 3x dx
13. /sec%dt 14. /xsec (x2 = 5)dx
46. / (sin 3x cos 2x — cos 3x sin 2x) dx
1 1
15. — ) d: 16. | —csc,db .
/CSC (o= m)ds /02 e’ Improper Fractions
Vin2 , - Evaluate each integral in Exercises 47-52 by reducing the improper
17. / 2x e’ dx 18. / (sin y)e®*” dy fraction and using a substitution (if necessary) to reduce it to standard
0 /2 form.
Vi
tan v 2 e’'dt 2
19. /e sec” v dv 20. 7 47. / .T. 1 de 48. / 2x dx
| * xt+ 1 Exercise
vl 2™ 3 3 3402
21. / 3+ dy 2. / o dx 49, 2 s0. [ T
V2 xt—1 . 2+ 3
Vw
2V dw 3_ 2 3 _ qp2
2. / 2, / 102 4o 43 — 12 + 16t 20° — 76% + 76
Vw 51. a4 dt 52. 20— 5 do
9 du 4 dx . .
25. 260 | ——————
/ [+ o2 / I+ 2xt 17 Separating Fractions
16 . Evaluate each integral in Exercises 53—56 by separating the fraction
27. dx 28. / dt and using a substitution (if necessary) to reduce it to standard form.
o V1-09? 0 V4 -1 —
25 d 2 dx 53 idx 54 /de é
s ds . .
29. | — 30. [ —/—— V1 —x? 2xVx — 1 i
1 + sinx 2 — 8
6 dx dr 55. / — —dx 56. / ——dx
31. — 32. — 0 cos”x o 1+ 4x
xV25x2 — 1 Nt =9
& dy Multiplying by a Form of 1
33. e + e 34. Ve — 1 Evaluate each integral in Exercises 57-62 by multiplying by a form of
s 1 and using a substitution (if necessary) to reduce it to standard form.
¢ dx In x dx
35. — 36. | ————
1 xcos(Inx) x + 4xIn“x 57 _r dx 58 S — x
’ 1 + sinx ’ 1 + cosx B
ercise
mpleting th r
Completing the Square 0. / | " 60, / 1 "
Evaluate each integral in Exercises 37-42 by completing the square sec 6 + tan 6 csc 6 + cotf
and using a substitution to reduce it to standard form. 1 1
61. /1_7dx 62. /1_701)6
2 3 dx 4 2 dx secx cscx
37 2-2x+2 3. 2—6x+ 10
Exercise . S Eliminating Square Roots
dt d9 Evaluate each integral in Exercises 63—70 by eliminating the square
39. 40.
Vrius Vo - ¢ root.
dx dx > [1 = cosx H
41. | ——————F—— 42. 63. fdx 64. V1 — cos2xdx
(x + DVx? + 2x (x—2)Vx?2—4x +3 0 0
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560 Chapter 8: Techniques of Integration

T 0
65. / V'1 + cos2tdt 66. / V'1 + costdt
/2 -

0 T
67. / V1 — cos?0.db 68./ V1 — sin’ 60 do
— /2

/4
69. / \/1 + tan’ y dy

/4

0
70. / \Vsec’y — 1dy

/4

b. Express f cot® @ d in terms of f cot’ 6.db.
c. Express f cot’ @ df in terms of f cot’dh.

d. Express f cot? 19 df, where k is a positive integer, in terms
off cot* 16 dp.

Assorted Integrations

Evaluate each integral in Exercises 71-82 by using any technique you
think is appropriate.

3m/4 /4
71. / (cscx — cotx)’dx  72. / (secx + 4 cosx)?dx
T, 0

/4
74. / <1 + %) cot(x + Inx) dx

75. /(cscx — secx)(sinx + cosx)dx

76. /3sinh (%—I—lnS)dx
6d
77. /7y 78. /L
V(1 + ) xVax?t — 1
79./ 7dx 80
(x — DVx? —2x — 48

81. /seczttan (tan¢) dt

73. / cos 6 csc (sin 0) dO

dx
) /(2x + 1) Vax? + 4x

% /di
xV3 + x?

Trigonometric Powers

83. a. Evaluate f cos® 0do. (Hint: cos’0 = 1 — sin®0.)
b. Evaluate f cos> 0 df.

c¢. Without actually evaluating the integral, explain how you
would evaluate f cos’ 6 df.

a. Evaluate f sin® 0 d6 . (Hint: sin?@ = 1 — cos?6.)
b. Evaluate f sin® 0 do.
. Evaluate f sin” 0de.

. Without actually evaluating the integral, explain how you
would evaluate f sin'* 0 db.

85. a. Express f tan’ 0 df in terms of f tan 6 df. Then evaluate
[ tan® 0 do. (Hint: tan> 6 = sec’6 — 1.)
b. Express f tan’ @ df in terms of f tan® 6 d6 .
c. Express f tan’ @ d in terms of f tan> 0 df.
d. Express f tan®*"! 0 d, where k is a positive integer, in terms
of [tan* 19 dh.

86. a. Express f cot’ 0 df in terms of f cot 6 df. Then evaluate
J cot? 0do. (Hint: cot? 6 = csc?6 — 1.)

84.

[=TE )

Theory and Examples

87.

88.

89.

90.

91.

92.

93.

94.

9s.

96.

Area Find the area of the region bounded above by y = 2 cosx
and below by y = secx, —7/4 = x = 7/4.

Area Find the area of the “triangular” region that is bounded
from above and below by the curves y = cscx and y = sinx,
7/6 = x = 7/2, and on the left by the line x = 7/6.

Volume Find the volume of the solid generated by revolving the
region in Exercise 87 about the x-axis.

Volume Find the volume of the solid generated by revolving the
region in Exercise 88 about the x-axis.

Arc length Find the length of the curve y = In(cosx),
0=x=m/3.

Arc length Find the length of the curve y = In(secx),
0=x=m/4.

Centroid Find the centroid of the region bounded by the x-axis,
the curve y = secx, and the lines x = —7/4,x = 7/4.

Centroid Find the centroid of the region that is bounded by the
x-axis, the curve y = csc x, and the lines x = 7/6,x = 57/6.

The integral of csc x Repeat the derivation in Example 7, using
cofunctions, to show that

/cscxdx = —In|cscx + cotx| + C.

Using different substitutions Show that the integral

/((x2 — D+ 1) dx

can be evaluated with any of the following substitutions.
a u=1/(x+1)

b. u=(x—1)/x+ DY fork =1, 1/2,1/3, —1/3, =2/3,
and —1
c. u=tan 'x
d. u=tan'"Vx e.u =tan'((x — 1)/2)
1

f. u =cos «x g u = cosh™'x

What is the value of the integral? (Source: “Problems and Solu-
tions,” College Mathematics Journal, Vol. 21, No. 5 (Nov. 1990),
pp. 425-426.)
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8.2 Integration by Parts 561

8.2 Integration by Parts

Since
xdx==x>+C

and

/xzdx = %x3 + C,

/x-xdx#/xdx-/xdx.

In other words, the integral of a product is generally not the product of the individual-
integrals:

it is apparent that

/f(x)g(x) dx is not equal to/f(x) dx -/g(x) dx.

Integration by parts is a technique for simplifying integrals of the form

/ fx)g(x) dx.

It is useful when f can be differentiated repeatedly and g can be integrated repeatedly
without difficulty. The integral
/ xe* dx

is such an integral because f(x) = x can be differentiated twice to become zero and
g(x) = " can be integrated repeatedly without difficulty. Integration by parts also applies

to integrals like
/ e* sinx dx

in which each part of the integrand appears again after repeated differentiation or
integration.
In this section, we describe integration by parts and show how to apply it.

Product Rule in Integral Form

If f and g are differentiable functions of x, the Product Rule says

L g = fg) + fxg' ().

In terms of indefinite integrals, this equation becomes

/immww=/wmmwﬂmwwx
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Video

or
[ shvmgna = [ regma+ [ g e

Rearranging the terms of this last equation, we get

/ f)g () dv = / L g de - / f'@g) dx

leading to the integration by parts formula

/ f(x)g'(x) dx = f(x)g(x) — / f'(x)g(x) dx (1)

Sometimes it is easier to remember the formula if we write it in differential form. Let
u = f(x) and v = g(x). Then du = f'(x) dx and dv = g'(x) dx. Using the Substitution
Rule, the integration by parts formula becomes

Integration by Parts Formula
/udv=uv—/vdu (2)

This formula expresses one integral, f u dv, in terms of a second integral, f vdu.
With a proper choice of u and v, the second integral may be easier to evaluate than the
first. In using the formula, various choices may be available for u and dv. The next
examples illustrate the technique.

EXAMPLE 1  Using Integration by Parts

Find
/ xcosxdx.

Solution We use the formula / udv = uv — / v du with

u=x, dv = cosxdx,
du = dx, v = sinx. Simplest antiderivative of cos x
Then
/xcosxdx=xsinx—/sinxdx=xsinx+cosx+C. [

Let us examine the choices available for # and dv in Example 1.

EXAMPLE 2  Example 1 Revisited

/xcosxde/udv

To apply integration by parts to
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8.2 Integration by Parts 563

we have four possible choices:

1. Letu = 1 anddv = xcosxdx. 2. Letu = xanddv = cosxdx.
3. Letu = xcosxand dv = dx. 4. Letu = cosxand dv = xdx.

Let’s examine these one at a time.
Choice 1 won’t do because we don’t know how to integrate dv = x cos x dx to get v.
Choice 2 works well, as we saw in Example 1.
Choice 3 leads to

U = XCOSX, dv = dx,
du

/vdu = /(xcosx — x2sinx) dx.

This is worse than the integral we started with.

(cosx — xsinx) dx, v =X,

and the new integral

Choice 4 leads to
U = COSX, dv = xdx,
du = —sinx dx, v = x%/2,
so the new integral is
x? .
/vdu = —/251nxdx.
This, too, is worse. L]

The goal of integration by parts is to go from an integral f u dv that we don’t see how
to evaluate to an integral f v du that we can evaluate. Generally, you choose dv first to be
as much of the integrand, including dx, as you can readily integrate; u is the leftover part.
Keep in mind that integration by parts does not always work.

EXAMPLE 3  Integral of the Natural Logarithm

Find
/ Inxdx.

Solution  Since [ Inxdx can be written as [ Inx-1dx, we use the formula
Judv=uv — [ vduwith

u=Inx Simplifies when differentiated dv = dx Easy to integrate
1 . o
du = de, v = X. Simplest antiderivative
Then

/lnxdx=xlnx—/x-)lcdx=xlnx—/dx=xlnx—x+ C. |

Sometimes we have to use integration by parts more than once.
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EXAMPLE 4  Repeated Use of Integration by Parts

/xzex dx.

Solution Withu = x2, dv = e*dx, du = 2xdx,and v = ¢*, we have

/xze"dx = x%* — 2/ xe*dx.

The new integral is less complicated than the original because the exponent on x is
reduced by one. To evaluate the integral on the right, we integrate by parts again with
u=x,dv=ce dx. Thendu = dx,v = e*, and

/xexdx=xex—/exdx=xe"— e’ + C.
/xzexdx = x%e* — 2/ xe™ dx

= x%* — 2xe* + 2¢° + C. |

Evaluate

Hence,

The technique of Example 4 works for any integral f x"e* dx in which 7 is a positive
integer, because differentiating x” will eventually lead to zero and integrating e* is easy.
We say more about this later in this section when we discuss tabular integration.

Integrals like the one in the next example occur in electrical engineering. Their evalu-
ation requires two integrations by parts, followed by solving for the unknown integral.

EXAMPLE 5  Solving for the Unknown Integral

/ e*cosxdx.

Solution Letu = e¥and dv = cosxdx. Thendu = e*dx, v = sinx, and

/e"cosxdx = e¥sinx — /e"sinxdx.

The second integral is like the first except that it has sin x in place of cos x. To evaluate it,
we use integration by parts with

Evaluate

u = e’ dv = sinx dx, v = —COSX, du = e*dx.

/e"cosxdx = e*sinx — (—e"cosx — / (—cosx)(e"dx))

e'sinx + e‘cosx — /excosxdx.

Then
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FIGURE 8.1 The region in Example 6.
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The unknown integral now appears on both sides of the equation. Adding the integral to
both sides and adding the constant of integration gives

2/ e‘cosxdx = e*sinx + e*cosx + Cj.

Dividing by 2 and renaming the constant of integration gives

X o1 X
e’sinx + e’ cosx
/excosxdx = + C. ]

2

Evaluating Definite Integrals by Parts

The integration by parts formula in Equation (1) can be combined with Part 2 of the
Fundamental Theorem in order to evaluate definite integrals by parts. Assuming that both
f' and g’ are continuous over the interval [a, b], Part 2 of the Fundamental Theorem gives

Integration by Parts Formula for Definite Integrals

b b
/ f)g () dx = f(x)gx)]) - / £ (x)g(x) dx 3)

In applying Equation (3), we normally use the u and v notation from Equation (2)
because it is easier to remember. Here is an example.

EXAMPLE 6  Finding Area

Find the area of the region bounded by the curve y = xe ™ and the x-axis from x = 0 to
x =4.

Solution The region is shaded in Figure 8.1. Its area is

4
/ xe “dx.
0

Letu = x,dv =¢e “dx,v = —e ,and du = dx. Then,

4 A 4
/ xe *dx —xeﬂ‘]o — / (—e™) dx
0 0

4
[—4e™ — (0)] + / e “dx
0

_ a4 x4
= —4e e ]0

= —4et —e - (=) =1 - 5¢*~091. ]

Tabular Integration

We have seen that integrals of the form f f(x)g(x) dx, in which f can be differentiated
repeatedly to become zero and g can be integrated repeatedly without difficulty, are
natural candidates for integration by parts. However, if many repetitions are required,
the calculations can be cumbersome. In situations like this, there is a way to organize
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the calculations that saves a great deal of work. It is called tabular integration and is
illustrated in the following examples.

EXAMPLE 7 Using Tabular Integration

/ x2e*dx.

Solution  With f(x) = x?and g(x) = e*, we list:

Evaluate

f(x) and its derivatives g(x) and its integrals

X

x2 *‘ e’
2x *# e*

0 e’

We combine the products of the functions connected by the arrows according to the opera-
tion signs above the arrows to obtain

/xzex dx = x%e* — 2xe* + 2¢* + C.
Compare this with the result in Example 4. [

EXAMPLE 8  Using Tabular Integration

Evaluate
/ x3 sin x dx.

Solution With f(x) = x* and g(x) = sinx, we list:

f(x) and its derivatives 2(x) and its integrals

x3 \(H> sin x
3x? \(—)>—cosx
6x k—k)‘—sinx

6 (=) cos x

0 \» sin x

Again we combine the products of the functions connected by the arrows according to the
operation signs above the arrows to obtain

/x3 sinxdx = —x3cosx + 3x%sinx + 6xcosx — 6sinx + C. [
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The Additional Exercises at the end of this chapter show how tabular integration can
be used when neither function f nor g can be differentiated repeatedly to become zero.

Summary

When substitution doesn’t work, try integration by parts. Start with an integral in which
the integrand is the product of two functions,

/ f(x)g(x) dx.

(Remember that g may be the constant function 1, as in Example 3.) Match the integral

with the form
/ udv

by choosing dv to be part of the integrand including dx and either f(x) or g(x). Remember that
we must be able to readily integrate dv to get v in order to obtain the right side of the formula

/udvzuv—/vdu.

If the new integral on the right side is more complex than the original one, try a different
choice for u and dv.

EXAMPLE 9 A Reduction Formula

Obtain a “reduction” formula that expresses the integral

/ cos” x dx

in terms of an integral of a lower power of cos x.

1

Solution We may think of cos” x as cos” ™' x -+ cosx. Then we let

u=cos" 'x and dv = cosxdx,

so that
du = (n — 1) cos" 2 x (—sinx dx) and v = sinx.

Hence

/cos”xdx = cos" 'xsinx + (n — 1)/ sinx cos” 2 x dx
= cos" xsinx + (n — 1)/ (1 — cos®x) cos" % x dx,

= cos" 'xsinx + (n — 1)/ cos" ?xdx — (n — 1)/ cos” x dx.

(n — 1)/ cos” x dx
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to both sides of this equation, we obtain
n/ cos" xdx = cos" 'xsinx + (n — 1)/ cos" 2 x dx.
We then divide through by 7, and the final result is

n—1 :
cos" ‘xsinx , n—1 _
/cos”xdx = n + = /cos” 2 x dx.

This allows us to reduce the exponent on cos x by 2 and is a very useful formula. When n
is a positive integer, we may apply the formula repeatedly until the remaining integral is

either
/cosxdx=sinx+C or /cosoxdx=/dx=x+C. |

EXAMPLE 10  Using a Reduction Formula

Evaluate
3
/ cos’x dx.

Solution From the result in Example 9,

2 .
cos“ x sin x 2
/cos3xdx =+ /cosxdx

3 3

=%coszxsinx+%sinx+ C. ]
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EXERCISES 8.2

Integration by Parts

Evaluate the integrals in Exercises 1-24. 13. /(x2 — Sx)e” dx 14. /(r2 + 7+ 1)e'dr
1. /xsin%dx 2. /Gcos7ﬂ9d0
Exercise 15. / e dx 16. / 2 dt
3. /t cos tdt 4. /xzsinxdx
/2

2 e 17. / 2sin 26 d6 18. / X cos 2x dx
5. / x1nxdx 6. / x3 lnx dx 0

1 1 1/V2

. 19. / tsec”! 20. / 2xsin”! (x?) dx

7. tan”! y dy 8. sin_ ydy 0
9. /xseczxdx 10. /4xsec 2x dx 21. /e sin 6 df 22'/ Vcos ydy
11. /x e*dx 12. /p4e_Pdp 23. /e cos 3x dx 24, /e 2 sin 2x dx
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Exercise

Substitution and Integration by Parts

Evaluate the integrals in Exercises 25-30 by using a substitution prior
to integration by parts.

25. /e“Sﬁgds

/3
27. / x tan® x dx
0

29. /sin (Inx) dx

1
26./x\/1—xdx
0
28. /ln(x+x2)dx

30. / z(Inz)? dz

Theory and Examples

31. Finding area Find the area of the region enclosed by the curve
y = xsinx and the x-axis (see the accompanying figure) for
a 0=sx=w b. m=x=27w c. 27 = x = 3.
d. What pattern do you see here? What is the area between the
curve and the x-axis for nm = x = (n + 1)m, n an arbitrary
nonnegative integer? Give reasons for your answer.

y
10 y =Xsinx

5L

N\ X
0 27w 3w
5

32. Finding area Find the area of the region enclosed by the curve
v = x cosx and the x-axis (see the accompanying figure) for

a. /2 =x = 37/2 b. 37/2 = x = 57/2
c. 5m/2 =x =77/2.

d. What pattern do you see? What is the area between the curve
and the x-axis for

(an—l)ﬂ_SxS(Zn;-l)ﬂ_,

n an arbitrary positive integer? Give reasons for your answer.

10

8.2 Integration by Parts 569

33. Finding volume Find the volume of the solid generated by re-
volving the region in the first quadrant bounded by the coordinate
axes, the curve y = e*, and the line x = In2 about the line
x=1In2.

34. Finding volume Find the volume of the solid generated by re-

volving the region in the first quadrant bounded by the coordinate
axes, the curve y = ¢, and the line x = 1

a. about the y-axis. b. about the linex = 1.

35. Finding volume Find the volume of the solid generated by re-
volving the region in the first quadrant bounded by the coordinate
axes and the curve y = cosx, 0 = x =< 7/2, about

b. the line x = /2.
36. Finding volume Find the volume of the solid generated by re-

volving the region bounded by the x-axis and the curve
y =xsinx,0 = x = 7, about

a. the y-axis.

a. the y-axis. b. the line x = 7.
(See Exercise 31 for a graph.)

37. Average value A retarding force, symbolized by the dashpot in
the figure, slows the motion of the weighted spring so that the
mass’s position at time ¢ is

y = 2e'cost, t=0.

Find the average value of y over the interval 0 < ¢ =< 27r.

Yr———-— Mass

Dashpot

38. Average value In a mass-spring-dashpot system like the one in
Exercise 37, the mass’s position at time 7 is
y =4de'(sint — cost), t=0.

Find the average value of y over the interval 0 = ¢ = 2.
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Reduction Formulas

In Exercises 3942, use integration by parts to establish the reduction
Sformula.

39. /x” cosxdx = x"sinx — n/x”_l sinx dx

40. /x” sinxdx = —x"cosx + n/ x" "L cos x dx

a a

41. /x”e“"dx =X _ ﬁ/ X" le®dx, a#0
42. /(lnx)" dx = x(Inx)" — n/ (Inx)""'dx

Integrating Inverses of Functions

Integration by parts leads to a rule for integrating inverses that usually
gives good results:

_ , y=f'x), x=f(y)
/f l(x) dx = /yf () dy dx = f'(y)dy
o _ d Integration by parts with
- yf(y) f(y) y u=y, dv = _f'()’) dy

— xf ) - / £ dy

The idea is to take the most complicated part of the integral, in this
case f~'(x), and simplify it first. For the integral of In x, we get

/lnxdx:/yeydy

=ye —e’+ C

y=Inx, x=¢’

dx = e’dy

=xlnx —x + C.

For the integral of cos™! x we get

/cosflxdx = xcos 'x — /cosydy y =cos 'x

1

=xcos x —siny + C

1

= xcos 'x — sin(cos™'x) + C.

Use the formula

/fl(x)dx = xf'(x) — /f(y) dy =70 (4

to evaluate the integrals in Exercises 43—46. Express your answers in

terms of x.
44. / tan~! x dx

43. /sinflxdx
45, / sec ' xdx 46. / logs x dx

Another way to integrate f '(x) (when f~! is integrable, of
course) is to use integration by parts with u = f~'(x) and dv = dx to
rewrite the integral of f~! as

/ £ dx = xf 7 (x) — / x(dii f*l(x)) dr. (5)

Exercises 47 and 48 compare the results of using Equations (4) and (5).

47. Equations (4) and (5) give different formulas for the integral of
cos ! x:

a. /cosﬁlxdx = xcos 'x — sin(cos™'x) + C Eq. (4)

b. /cosflxdx =xcos'x - V1 —-x>+C Eq. (5)

Can both integrations be correct? Explain.

48. Equations (4) and (5) lead to different formulas for the integral of
tan " x:

a. /tanflxdx = xtan 'x — Insec (tan"'x) + C Eq. (4)

b. /tan_lxdx =xtan 'x —InV1+x2+C Eq. (5)

Can both integrations be correct? Explain.

Evaluate the integrals in Exercises 49 and 50 with (a) Eq. (4) and (b)
Eq. (5). In each case, check your work by differentiating your answer
with respect to x.

49. / sinh™! x dx

50. / tanh™! x dx
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