
THE THYROID GLAND

Thyroid hormones

Amino acid derivatives
Tri-iodothyronine (T3)
Tetra-iodothyronine (T4 or
Thyroxine))

From tyrosine

Tyrosine bound into polypeptides
Thyroglobulin
Secreted as colloid
Stored extra-cellularly in follicles

Summary of Biosynthesis of T4 and T3

The process includes

- Dietary iodine (I) ingestion
- Active transport and uptake of iodide (I-) by thyroid gland
- Oxidation of I-and iodination of thyroglobulin (Tg) tyrosine residues
- Coupling of iodotyrosine residues (MIT and DIT) to form T4 and T3
- Proteolysis of Tg with release of T4 and T3 into the circulation

Control of Thyroid Secretion

 Controlled by trophic hormone from anterior pituitary gland

The anterior pituitary

- Secretes a number of hormones from different cell types
 - Luteotrophs secrete Luteinising hormone and Follicle Stimulating Hormone (LH & FSH)
 - Lactotrophs secrete Prolactin
 - Somatotrophs secrete Growth Hormone (GH)
 - Corticotrophs secrete Adrenocorticotrophic Hormone (ACTH)
 - Thyrotrophs secrete Thyroid Stimulating Hormone (TSH)

Control of anterior pituitary secretion

- Each cell type controlled by a Releasing Hormone secreted from the hypothalamus
- Travels directly to anterior pituitary in Hypophyseal portal circulation
 - 'portal' means connecting two capillary beds directly
- Prevents dilution in general circulation
- Releasing hormones are secreted from nerves
 - Affected by the rest of the brain

Control of TSH secretion

- Thyrotrophs stimulated by Thyrotrophin Releasing Hormone (TRH)
 - Tripeptide
- Release TSH
 - Glycoprotein
 - Two subunits, α & β

Negative feedback control

- If T4 or T3 levels rise
- This reduces TSH secretion
- Which reduces secretion of T4 and T3, bringing levels back to 'set point'
- And vice-versa
- Set point determined by how strongly thyroid hormones inhibit TSH secretion
- This is determined by TRH
 - More TRH less powerful inhibition
 - Therefore thyroid hormone levels rise in a controlled way

Negative feedback control

- Like a heating thermostat
- TRH sets the thermostat
- Negative feedback controls levels at the defined setting

Transport of thyroid hormones

- 99% of T4 and T3 in blood bound to protein
 - -Total T4 100 nmol.l⁻¹
 - -Total T3 2 nmol.l⁻¹
- Thyroid Binding Globulin (TBG)
- Very small free pool acts on tissues
 - -Free T4 20 pmol.l⁻¹
 - -Free T3 8 pmol.l⁻¹

Actions of Thyroid hormones

- Thyroid hormones freely cross cell membranes
- Bind to receptor in the cell to affect gene transcription
- Act to increase metabolic rate
 - Increase in number of mitochondria
 - Increased oxygen consumption & heat production
 - Increased nutrient utilisation

Actions of thyroid hormones

- Stimulate most metabolic pathways
- Promote normal growth and development of tissues
- Increase responsiveness to other stimuli (eg sympathetic nervous system)

Thyroid Hormone Plays a Major Role in Growth and Development

- •Thyroid hormone initiates or sustains differentiation and growth
- -Stimulates formation of proteins, which exert trophic effects on tissues
- -Is essential for normal brain development
- Essential for childhood growth
- -Untreated congenital hypothyroidism or chronic hypothyroidism during childhood can result in incomplete development and mental retardation

Metabolic effects

- Stimulates lipolysis and release of free fatty acids and glycerol
- Induces expression of lipogenic enzymes
- Effects cholesterol metabolism
- Stimulates metabolism of cholesterol to bile acids
- Facilitates rapid removal of LDL from plasma
- •Generally stimulates all aspects of carbohydrate metabolism and the pathway for protein degradation

Thyroid disorders

- Hypothyroidism
 - -Too little secretion
 - -T4 & T3 levels low
- Hyperthyroidism
 - -Too much secretion
 - -T4 & T3 levels high

Effects of hyperthyroidism

- Metabolic symptoms & signs
 - Weight loss
 - -Heat intolerance
 - Excess sweating
 - -Increased appetite