
Metabolism module

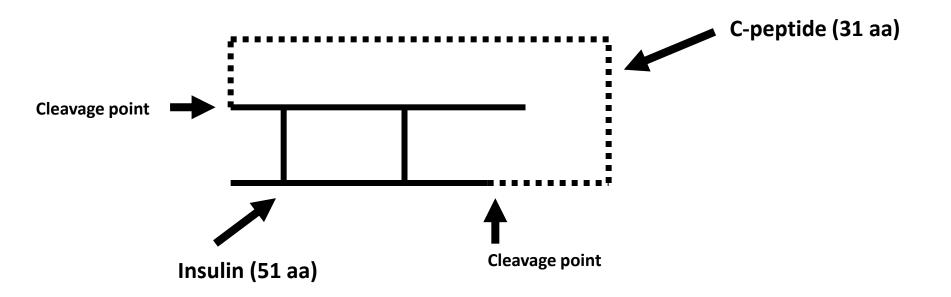
The endocrine pancreas

Pancreas

- Large organ
- Inferior and anterior to stomach
- Mostly an exocrine gland
 - Digestive secretions
- But also contains Islets of Langerhans
- Which are endocrine glands
 - About 1million in the pancreas

© Elsevier. Drake et al: Gray's Anatomy for Students - www.studentconsult.com

Hormones of the endocrine pancreas


- Insulin
 - Secreted by β -cells
- Glucagon
 - Secreted by α -cells
- Both critical to the control of blood glucose concentration

Insulin

- Polypeptide
- 51 amino acids in two chains
 - A chain 21 amino acids
 - B chain 30 amino acids
- Held together by disulphide bridges (cysteine)
- Synthesised as pro-insulin

Pro insulin

- Pro insulin is a single chain of 86 amino acids
- Cleaved at two points
 - Loses 2 amino acids at each

Glucagon

- Single chain polypeptide
- 29 amino acids
- No bridges
 - Flexible molecule
- Synthesised as it is secreted

Synthesis of pancreatic hormones

- Made like any other proteins on ribosomes
- But are then packaged for secretion
 - Storage vesicles
- Released by exocytosis

Control of insulin secretion

- Insulin is secreted when:
 - Blood glucose levels rise above 5 mmol.l⁻¹
 - Blood amino acid levels rise
 - The vagus nerve is activated
- Blood glucose changes by far the most important

Effects of blood glucose rises on the β -cell

- Glucose enters β cells readily
- Stimulates glycolysis
- Extra ATP formed
- Rise in intra-cellular [ATP] acts on ion channels in cell membrane
 - K⁺ channels
- Cause Ca²⁺ ions to move in
- Which stimulates exocytosis

Control of glucagon secretion

- Glucagon is secreted when
 - Blood glucose levels fall below 5 mmol.l⁻¹
 - Amino acids rise
 - Adrenaline secretion is stimulated

Transport of pancreatic hormones

- Both Insulin & Glucagon are hydrophilic
- Travel in simple solution
- But cannot cross cell membranes
- So must act on cell surface receptors

Actions of Insulin

- Insulin acts upon most tissues
 - Not nervous tissue
 - Especially liver, adipose tissue and muscle
 - Stimulates uptake of glucose
 - Promotes glycolysis
 - And, especially in liver, formation of glycogen
 - Stimulates growth
 - Uptake of amino acids
 - Anabolic

Insulin receptors

- Membrane bound proteins
 - Outer part α subunit binds insulin
 - Membrane spanning part β subunit
 - Protrudes into cytosol of cell
 - Has tyrosine kinase, which when activated phosphorylates enzymes to activate them
- Binding of Insulin to outside activates enzymes on inside

Insulin stimulated cells

- Increased production of GLUT-4 transporter proteins
- Incorporated into membrane
- Glucose enters cells more readily
- And is metabolised

Inactivation

- Insulin/ receptor complex internalised
- Broken down to amino acids

Actions of Glucagon

- Acts mainly on liver and adipose tissue
 - Glucose release from liver
 - From glycogen
 - Fatty acid release from adipose tissue
- In absence of Insulin, muscle etc use fatty acids for fuel
- Leaving glucose for brain
- Also stimulates gluconeogenesis

Glucagon receptors

- Glucagon binds to cell surface receptor
- Linked to G-proteins
- Triggers action of adenylate cyclase
- Produces 3'-5'cyclic-amp (c-amp)
 - Second messenger
- C-amp interacts with protein kinase
- Phosphorylates key enzymes

In the fed state

- Blood glucose rises
- Insulin secreted
 - Liver takes up glucose glycogen production
 - Adipose tissue takes up glucose lipid storage
 - Muscle etc take up glucose support metabolism
 & a little stored

In the fasting state

- Blood glucose falls
 - Insulin secretion reduced
 - Glucagon increased
 - Liver gives up glucose glycogen breakdown
 - Adipose tissue gives up fatty acids
 - Glucose cannot easily enter muscle etc, so they use fatty acids for fuel
 - Once local glycogen stores depleted
 - Blood glucose preserved for brain

Disorders of the endocrine pancreas

- Diabetes mellitus
- Group of metabolic diseases
 - Affect 120m people worldwide
 - Increasing all the time
- Characterised by hyperglycaemia
- Caused by
 - Insulin deficiency
 - And/or insulin resistance of target cells

Lack of insulin

- Tissues cannot utilise glucose
 - Blood glucose levels high
 - But energy supply to tissues low
 - tiredness
 - Tissues utilise fatty acids
 - Produce ketone bodies
 - High blood glucose leads to glucose in urine
 - Osmotic diuresis
 - Water deprivation and thirst