Metabolism module

Introduction to Hormones

Communication is the key

- Multi-cellular organisms stay together because cells communicate
 - When they come into contact (autocrine)
 - Cell surface chemicals
 - When they are close (paracrine)
 - Local diffusion of chemical messengers
 - When they are far apart (endocrine)
 - Chemical messengers in the blood stream (Hormones)
 - Electrical transmission (Nerves)

Chemical communication

- A chemical messenger must be produced by one cell
- And detected by another
 - Target cell
 - Receptors
- Receptors are (insulin as example)
 - Specific for particular messengers
 - Linked to metabolic processes in the cell
 - Directly or indirectly
- Receptors always involved even when transmission is mostly electrical (see Figure again)

So: Local and long distance

- Cells in contact
 - Direct interaction
 - Immune system
- Cells nearby
 - Local diffusion of messengers
 - Paracrine
- Distant cells
 - Chemicals in the blood stream
 - Endocrine via hormones
 - Rapid electrical transmission
 - nerves

Hormone

 Chemical signal produced by endocrine glands that travel in the bloodstream to affect other tissues

Where? - Endocrine glands

- Head & neck
 - Pineal body (Melatonin)
 - Hypothalamus (Releasing H & release inhibitory)
 - Pituitary gland anterior and posterior parts
 - Thyroid glands
 - Parathyroid glands (4 in No.)

Where? - Endocrine glands

- Abdomen
 - Adrenal glands cortex and medulla
 - Pancreas
 - Kidneys
 - Gut

Where? - Endocrine glands

• Pelvis

– Gonads

- Ovaries
- Testes
- Placenta (pregnancy)

What? – classes of hormones

- Polypeptide hormones
 - Around 20
- Glycoprotein hormones

– Four

- Amino acid derivatives
 - 3 major
- Steroid hormones
 - Around 10

Polypeptide hormones

- Largest group
- Nearly all single chain peptides vary in chain length
 - Growth hormone 191 amino acids
 - Insulin 51 amino acids in two chains
 - TRH 3 amino acids

Glycoprotein hormones

- All have two polypeptide chains with carbohydrate side chains
 - α and β chains (α is similar while β is vary)

Related families

- Thyroid stimulating hormone (TSH)
- Follicle stimulating hormone (FSH)
- Luteinising hormone (LH)
- Human chorionic gonadotrophin (HCG)

Polypeptide and glycoprotein hormones

- Synthesised as larger precursor molecules
 Pro-hormones
- Stored in vesicles before release
- Cleaved to active hormone
- Example : perproinsulin → proinsulin → insulin

Amino acid derivatives

• All from tyrosine

- Thyroid hormones
 - Tetra-iodothyronine (T4)
 - Tri-iodothyronine (T3)
- Catecholamines (Ex: Adrenaline & noradrenaline)

Adrenaline

- Stored in vesicles in adrenal medulla
- Hydrophilic molecule
- Does not easily cross cell membranes

Thyroid hormones

- Stored extra- cellularly in follicles in thyroid gland
- As colloid
- Hydrophobic
- Readily cross cell membranes (has cytoplasmic and nuclear receptors)

Steroid hormones

• Derived from cholesterol

Steroids

- Classed by:
 - Number of carbon atoms
 - C27, C21,C19 or C18
 - Number of double bonds
 - Different side chains

Classes of steroid hormones

• C27

- Calciferols e.g. vitamin D
- C21
 - Corticosteroids adrenal cortex
 - Glucocorticoids (cortisol)
 - Mineralocorticoids (eg aldosterone)
 - Progestins eg progesterone from ovaries
- C19
 - Androgens eg testosterone from testes
- C18
 - Oestrogens eg oestradiol from ovaries

Steroids

- Not stored by cells
- Synthesised on demand from cholesterol esters
- Hydrophobic
- Readily cross cell membranes

Travelling in the blood

- Few hormones soluble enough to travel in simple solution
 - Peptides
 - Adrenaline
- Most should bind to (usually) proteins
 - Often specific
 - Steroids
 - Thyroid hormones

Controlling secretion

- The endocrine cells are stimulated chemically to release hormones
- Produces negative feedback control
- Tends to keep hormone concentration in blood at controlled level

Negative feedback

- Just Example is HPT axis
- TRH secretion stimulated when blood thyroxine levels fall
- TRH acts on anterior pituitary to stimulate TSH secretion
- TSH acts on thyroid gland to make thyroxine levels rise
- High thyroxine reduces TSH secretion again
- Overall acts to keep blood thyroxine levels constant
 - Many hormones controlled in similar ways

Critical role of anterior pituitary

- Many hormones controlled by other hormones ('trophic' hormones)
- Secreted by anterior pituitary gland
- Allows brain to influence the endocrine system

Hormone action

- Always bind to receptors
- If hormone can cross membrane (eg steroids) receptors located inside cells
- Receptor hormone complex can move
- Binding linked directly to metabolic changes
 Often expression of genes

Hormone action

- If hormone cannot cross membrane
- Binds to receptor on cell surface
- Activates second messenger pathway
- Second messenger (inside the cell) exerts metabolic effects
 - Often modifying action of enzymes

Inactivation

- Steroids and amino-acid derivatives
 - Small changes in structure
 - Recycled or excreted
- Peptides
 - Degraded to amino acids
- Inactivation may occur in target tissues, but also in other tissues, especially the liver