Android File System

Babylon University , IT College , SW Dep. , Android
Assist. Lecturer : Wadhah R. Baiee (2014)

Ref: Wei-Meng Lee, “BEGINNING ANDROID™ 4 APPLICATION
DEVELOPMENT “, Ché , John Wiley & Sons , 2012

File System

Most of the Android user are using their
Android phone just for calls, SMS, browsing
and basic apps, But form the development
prospective, we should know about Android
internal structure.

Android uses several partitions (like boot,
system, recovery , data etc) to organize files
and folders on the device just like Windows

OsS.

File System

Each of these partitions has it’'s own
functionality, But most of us don’t know the
significance of each partition and its contents.

In this article, we will take you on a tour of
Android partitions. So lets start the android file
system tutorial.

File System

-1 There are mainly 6 partitions in Android
phones, tablets and other Android devices.

0 Note that there might be some other partitions
available, it . But
logically below 6 partitions can be found in
any Android devices.

File System
N

0 /boot

Android Partition Details
0 /[system et T—
0O /recovery Boot System Recovery Data Cache Misc
- /dﬂ"d techblogon.com
0 /cache
0 /misc

Also Below are the for SD Card Fie System Partitions.

0 /sdecard

o /sd-ext

File System

You can know which partitions are available along
with the partition size for all partition in your android
device. Go through the below image and run the adb
command as shown in that image.

5 Y
Administrator: C:\Windows\system32\cmd.exe - adb shell l |- l-&]

E:\android—-sdk\platform—toolsi adb shell
rootPandroid:/ # df

Size Used Free
397M 84.BK 397M
397M 0O.68K 397M
397M B.68K 397M
397M 06.080K 397M

19.7M 4.11M 15.6M
1511M 957M 554M
1667M 17.3M 296M
4133M 398M 3735M
/storage/sdcardd 4833M 398M 3635M
rootPandroid:/ #

Note: boot and recovery partition is not displayed
in the above image.

/boot

This is the boot partition of your Android device, as
the name suggests.

It includes the android kernel and the ramdisk.
The device will not boot without this partition.

Wiping this partition from recovery should only be
done if absolutely required and once done, the
device must NOT be rebooted before installing a new
one, which can be done by installing a ROM that
includes a /boot partition.

[system

As the name suggests, this partition contains the entire
Android OS.

This includes the Android GUI and all the system
applications that come pre-installed on the device.

Wiping this partition will remove Android from the
device without rendering it unbootable, and you will
still be able to put the phone into recovery or
bootloader mode to install a new ROM.

[recovery

_
0 This is specially designed for backup.

-1 The recovery partition can be considered as an
alternative boot partition, that lets the device
boot into a recovery console for performing
advanced recovery and maintenance operations
on it.

/data

It is called userdata partition.

This partition contains the user’s data like your
contacts, sms, settings and all android
applications that you have installed.

While you are doing factory reset on your
device, this partition will wipe out, Then your
device will be in the state, when you use for he
first time, or the way it was after the last official
or custom ROM installation.

[cache

This is the partition where Android stores
frequently accessed data and app components.

Wiping the cache doesn’t effect your personal
data but simply gets rid of the existing data
there, which gets automatically rebuilt as you
continue using the device.

/misc

This partition contains miscellaneous system
settings in form of on/off switches.

These settings may include CID (Carrier or
Region ID), USB configuration and certain
hardware settings etc.

This is an important partition and if it is corrupt
or missing, several of the device’s features will
will not function normally.

[sdcard

This is not a partition on the internal memory of the
device but rather the SD card.

In terms of usage, this is your storage space to use as

you see fit, to store your media, documents, ROMs etc.
on it.

Wiping it is perfectly safe as long as you backup all
the data you require from it, to your computer first.

Though several user-installed apps save their data
and settings on the SD card and wiping this partition
will make you lose all that data.

[sd-ext

This is not a standard Android partition, but has
become popular in the custom ROM scene.

It is basically an additional partition on your SD card
that acts as the /data partition.

It is especially useful on devices with little internal
memory allotted to the /data partition.

Thus, users who want to install more programs than the
internal memory allows can make this partition and
use it for installing their apps.

File System

Sometimes you might prefer to use the
traditional file system to store your data.

For example, you might want to store the text
of poems you want to display in your
applications.

In Android, you can use the classes in the
java.io package to do so.

Saving to Internal Storage
N

o The first way to
save fi les in your
Android
application is to
write to the
device’s internal
storage.

<TextView
androld:layout width="f111 parent"”
androld:layout_helght="wrap content"”
androld:text="Please enter some text" />

<EdltText
androld:id="@+1id/txtText1"
androld:layout wildth="f111 parent"”
androld:layout helght="wrap content" />

<Button
android:id="@+1id/btnSave"”
androld:text="Save"
android:layout width="f111 parent"”
android:layout helght="wrap content"”
androld:onClick="onClickSave"™ />

<Button
android:id="@+1id/btnLoad"
androld:text="Load"
androld:layout width="f111 parent"”
androld:layout helght="wrap content”
androld:onClick="onClickLoad" />

Saving to Internal Storage
N

In the FilesActivity.java file, add the following statements in bold:

import java.lo.FlleInputStream;
import java.ilo.FlleCutputStream;
import java.lo.IOException;

lmport java.lo.InputStreamReader;
lmport java.lo.OutputStreamWriter;

import android.app.Activity;
import android.os.Bundle;
lmport android.view.View;
import android.wildget.EditText;
import androild.widget.Toast;

public class FilesActivity extends Activity {
EditText textBox;
static final int READ BLOCE_SIZE = 100;

/** Called when the activity is first created. */

@0verride

public void onCreate (Bundle savedInstanceState)
super.onCreate (savedInstancesState) ;
setContentView (R.layout.main) ;

textBox = (EditText) findViewById(R.id.txtTextl);

Saving to Internal Storage

String =str = textBox.getText () .toString():
try
{
FlleOutputsStream fOut =
openFlleCutput ("textflile.txt"™,
MODE_ WORLD READABLE) ;
OutputStreamWriliter osw = new
outputStreamWriter (fout);

/f=-=--wrlite the string to the file---
osw.wrilte(str);

osw.flushi);

osw.closel();

//—-—--display file =saved message---

Toast . makeText (getBaseContext ().,
"File saved successfully!",
Toast . LENGTH_SHORT) .show() ;

/f=-=-=-clears the EdltText---
textBox.setText ("") 2

}

catch (IOExceptlion l1oe)

{
loe.printStackTrace()

}

Saving to Internal Storage

1 To save text into a file, you use the
FileOutputStream class.

11 The openFileOutput() method opens a named file
for writing, with the mode specified.

7 In this example, you used the
MODE WORLD READABLE constant to indicate
that the file is readable by all other
applications.
MODE_PRIVATE
MODE_APPEND
MODE_WORLD_WRITEABLE

Saving to Internal Storage

1 To convert a character stream into a byte stream,
you use an instance of the OutputStreamWriter
class, by passing it an instance of the
FileOutputStream object:

QutputStreamiWriter osw = new
OutputStreamWriter (fOut);

1 You then use its write() method to write the string
to the file.

7 To ensure that all the bytes are written
1 to the file, use the flush() method.

0 Finally, use the close() method to close the file.

public wvold onClickLoad(View wview) {
try
{
FlleInputStream fIn =
openFlleInput ("textflile.txt™);
InputStreamReader 1sr = new

InputstreamReader (fIn); e

char[] inputBuffer = new char [READ BLOCE SIZE]:
String s = "";

int charRead;

while ({({charRead = isr.read(inputBuffer))>0)

{
/f=-—--convert the chars to a String---
String readsString =

String.copyValueOrf{(inputBuffer, 0,
charRead) ;

8 += readString;

inputBuffer = new char[READ BLOCE_SIZEE];
}
ff———set the EdlitText to the text that has been
S/ read---
textBox.setText (s) ;

Toast .makeText (getBaseContext ().,
"File loaded successfully!"™,
Toast.LENGTH_ SHORT) .show() ;

1
catch (IOException ioce) {
ice.printsStackTrace();

Saving to Internal Storage
=

7 To read the content of a fi le, you use the
FileInputStream class, together with the

-
E

leInputStream f£fIn =

InpUTSTrequeQder CICISS: N mpenFile:npuE{"te}:t:'ile. txt");

InputStreamBeader isr = new
InputStreamReader (LIn) ;

71 The read() method of the InputStreamReader object
checks the number of characters read and returns -1 if
the end of the file is reached.

Saving to Internal Storage

When testing this application on the Android emulator,
you can use the DDMS perspective to verify that the
application did indeed save the fi le into the
application’s files directory

(see Figure 6-11; the entire path is
/data/data/net.learn2develop.Files /files)

Saving to Internal Storage
T ‘ {8 DDMS - Files/src/net/leam2develop/Files/Filesictvityjava - Ecipse 'EIQE_

File Edit Run Source Navigate Search Project Refactor Window Help

NYER& BE BHE PrO-Qr & 0 [EOONE) e
@O S P B ErD
@ Devices 32 =ik '§,Threads|eHeap|@Allocat:onTrade"‘ | == | ¥ =08
#| 6 6 G2 2| & 7 || Nome Size Date
Name A b (& com.svox.pico 2011-10-20
emulator-5554 Online » (& jp.co.omronscft.openwnn 2011-10-20
system_process 672 > (= netlearn2develop.Activityl01 2011-11-16
com.android.systemui 727 » (& netleam2develop.Dialog 2011-11-16 (
com.android.phone 752 b ([netlearn2develop.Emails 2011-11-13
com.android.launcher 768 4 (= netleamn2develop.Files 2011-11-22
com.android.calendar 787 « = ﬁ_'“ 2011-11-22
android.process.acore 819 U tedfilett 27 2011-11-22 (— I
com.android.deskclock 828 ~ > & lib 2011-11-22 (El ‘
< m] R » (& netlearn2develop.HelloWorld 2011-11-10 ¢ ‘
- b (& netlearn2develop.JSON 2011-11-21 ‘
@ Emulator Control 32 - o > (= net.eam2develop.LocationTracker 011-11-14
oz A A - n (= net learn?develnn Netwinrvinn R RIS R IR R g
Voice: |home 'I Soeed: |Full T e | P T —— 3
I LogCat 52 [Console| ~
SavedFilters o = ' c.o0p for messages. Accepts Java regexes. Prefix with pid:, app:, tag: or text: to limit scope. lvqbo;e vl H H “
All messages (no filte : o n
net.learn2develop.Dii ki | Fieme PID Application Tag |
netlearn2develop.Us. E 11-21 13:49:02.971 626 net.learn2develo... AndrcidRuntime
net.leamdelop.Int' E 11-21 13:49:02.971 626 net.learn2develo... AndroidRuntime D
netlearn?ddevelan. IS0 E 11-21 13:49:02.971 626 net.learn2develo... AndroidRuntime <
< LamJ (J (B 1 S— T — S »

1) Launching Dialog

Saving to SD card
—

11 Using the project created in the previous section as the example,
to save the text entered by the user in the SD card, modify the
onClick() method of the Save button as shown in bold here.

7 import android.os.Environment;

//---8D Card Storage---

Flle sdCard = Environment.getExternalStorageDirectory():

Flle directory = new File (sdCard.getAbsolutePath() +
"/MyFlles");

directory.mkdirs();

Flle file = new Flle(directory, "textflle.txt");

FlleOutputStream fOut = new FlleOutputStream(file);

II.I‘-.llr
FlleOutputStream fOut =
openFlileOutput ("textfile.txt",
MODE_WORLD_ READABLE) ;
*/

Saving to SD card

11 The preceding code uses the getExternalStorageDirectory()
method to return the full path to the external storage.

0 Typically, it should return the “/sdcard” path for a real
device, and “/mnt/ sdcard” for an Android emulator.

O However, you should never try to hardcode the path to the SD
card, as manufacturers may choose to assign a different path
name to the SD card.

O Hence, be sure to use the getExternalStorageDirectory() method
to return the full path to the SD card.

71 You then create a directory called MyFiles in the SD card.

o Finally, you save the file into this directory.

Saving to SD card

-
1 To load the file from the external storage, modify the
onClickLoad() method for the Load button:

//---8D Storage---

Flle sdCard = Environment.getExternalStorageDirectoryl():

Flle directory = new Flle (sdCard.getAbsolutePath() +
"/MyFlles");

Flle flle = new Flle(directory, "textfilile.txt");

FlleInputStream fIn = new FlleInputStream(file);

InputStreamReader isr = new InputStreamReader(fIn);

FileInputStream fIn =

cpenFileInput("textfile.txt");
InputStreamBeader isr = new

InputStreamBReader (fIn) ;

Saving to SD card

1 Note that in order to write to the external storage, you need to

add the WRITE_EXTERNAL_STORAGE permission in your
AndroidManifest.xml file:

<?¥ml version="1.0" encoding="utf-8"7=

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="net.learnzdevelop.Files"
android:versionCode="1"

android:versionName="1.0" =

<uses-sdk android:minSdkVersion="14" /=
<uses-permission android:name="androld.permission.WRITE EXTERNAL STORAGE" />

