
Android File System
Babylon University , IT College , SW Dep. , Android

Assist. Lecturer : Wadhah R. Baiee (2014)

Ref: Wei-Meng Lee, “BEGINNING ANDROID™ 4 APPLICATION

DEVELOPMENT “, Ch6 , John Wiley & Sons , 2012

File System

 Most of the Android user are using their

Android phone just for calls, SMS, browsing

and basic apps, But form the development

prospective, we should know about Android

internal structure.

 Android uses several partitions (like boot,

system, recovery , data etc) to organize files

and folders on the device just like Windows

OS.

File System

 Each of these partitions has it’s own

functionality, But most of us don’t know the

significance of each partition and its contents.

 In this article, we will take you on a tour of

Android partitions. So lets start the android file

system tutorial.

File System

 There are mainly 6 partitions in Android

phones, tablets and other Android devices.

 Note that there might be some other partitions

available, it differs from Model to Model. But

logically below 6 partitions can be found in

any Android devices.

File System

 /boot

 /system

 /recovery

 /data

 /cache

 /misc

Also Below are the for SD Card Fie System Partitions.

 /sdcard

 /sd-ext

File System

 You can know which partitions are available along

with the partition size for all partition in your android

device. Go through the below image and run the adb

command as shown in that image.

 Note: boot and recovery partition is not displayed

in the above image.

/boot

 This is the boot partition of your Android device, as

the name suggests.

 It includes the android kernel and the ramdisk.

 The device will not boot without this partition.

 Wiping this partition from recovery should only be

done if absolutely required and once done, the

device must NOT be rebooted before installing a new

one, which can be done by installing a ROM that

includes a /boot partition.

/system

 As the name suggests, this partition contains the entire

Android OS.

 This includes the Android GUI and all the system

applications that come pre-installed on the device.

 Wiping this partition will remove Android from the

device without rendering it unbootable, and you will

still be able to put the phone into recovery or

bootloader mode to install a new ROM.

/recovery

 This is specially designed for backup.

 The recovery partition can be considered as an

alternative boot partition, that lets the device

boot into a recovery console for performing

advanced recovery and maintenance operations

on it.

/data

 It is called userdata partition.

 This partition contains the user’s data like your

contacts, sms, settings and all android

applications that you have installed.

 While you are doing factory reset on your

device, this partition will wipe out, Then your

device will be in the state, when you use for he

first time, or the way it was after the last official

or custom ROM installation.

/cache

 This is the partition where Android stores

frequently accessed data and app components.

 Wiping the cache doesn’t effect your personal

data but simply gets rid of the existing data

there, which gets automatically rebuilt as you

continue using the device.

/misc

 This partition contains miscellaneous system

settings in form of on/off switches.

 These settings may include CID (Carrier or

Region ID), USB configuration and certain

hardware settings etc.

 This is an important partition and if it is corrupt

or missing, several of the device’s features will

will not function normally.

/sdcard

 This is not a partition on the internal memory of the

device but rather the SD card.

 In terms of usage, this is your storage space to use as

you see fit, to store your media, documents, ROMs etc.

on it.

 Wiping it is perfectly safe as long as you backup all

the data you require from it, to your computer first.

 Though several user-installed apps save their data

and settings on the SD card and wiping this partition

will make you lose all that data.

/sd-ext

 This is not a standard Android partition, but has

become popular in the custom ROM scene.

 It is basically an additional partition on your SD card

that acts as the /data partition.

 It is especially useful on devices with little internal

memory allotted to the /data partition.

 Thus, users who want to install more programs than the

internal memory allows can make this partition and

use it for installing their apps.

File System

 Sometimes you might prefer to use the

traditional file system to store your data.

 For example, you might want to store the text

of poems you want to display in your

applications.

 In Android, you can use the classes in the

java.io package to do so.

Saving to Internal Storage

 The first way to

save fi les in your

Android

application is to

write to the

device’s internal

storage.

Saving to Internal Storage

In the FilesActivity.java file, add the following statements in bold:

Saving to Internal Storage

Saving to Internal Storage

 To save text into a file, you use the
FileOutputStream class.

 The openFileOutput() method opens a named file
for writing, with the mode specified.

 In this example, you used the
MODE_WORLD_READABLE constant to indicate
that the file is readable by all other
applications.

 MODE_PRIVATE

 MODE_APPEND

 MODE_WORLD_WRITEABLE

Saving to Internal Storage

 To convert a character stream into a byte stream,
you use an instance of the OutputStreamWriter
class, by passing it an instance of the
FileOutputStream object:

 You then use its write() method to write the string
to the file.

 To ensure that all the bytes are written

 to the file, use the flush() method.

 Finally, use the close() method to close the file.

Saving to Internal Storage

 To read the content of a fi le, you use the

FileInputStream class, together with the

InputStreamReader class:

 The read() method of the InputStreamReader object

checks the number of characters read and returns -1 if

the end of the file is reached.

Saving to Internal Storage

 When testing this application on the Android emulator,

you can use the DDMS perspective to verify that the

application did indeed save the fi le into the

application’s files directory

 (see Figure 6-11; the entire path is

/data/data/net.learn2develop.Files/files)

Saving to Internal Storage

Saving to SD card

 Using the project created in the previous section as the example,

to save the text entered by the user in the SD card, modify the

onClick() method of the Save button as shown in bold here.

 import android.os.Environment;

Saving to SD card

 The preceding code uses the getExternalStorageDirectory()

method to return the full path to the external storage.

 Typically, it should return the “/sdcard” path for a real

device, and “/mnt/ sdcard” for an Android emulator.

 However, you should never try to hardcode the path to the SD

card, as manufacturers may choose to assign a different path

name to the SD card.

 Hence, be sure to use the getExternalStorageDirectory() method

to return the full path to the SD card.

 You then create a directory called MyFiles in the SD card.

 Finally, you save the file into this directory.

Saving to SD card

 To load the file from the external storage, modify the

onClickLoad() method for the Load button:

Saving to SD card

 Note that in order to write to the external storage, you need to

add the WRITE_EXTERNAL_STORAGE permission in your

AndroidManifest.xml file:

