Chapter three Motion in two dimension
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Motion ix two dimension

3-1 The Displacement, velocity and acceleration

A particle moving in xy-plane is located with the position vector r
drawn from the origin to the particle. The displacement of the particle as
it moves from A to B in the time interval.

At= tf — ti is equal to the vector y
yh of particle
Ar=r_—r,
fo

The instantaneous velocity v is given by: t;

>
-
Q
=
v

The instantaneous acceleration a is :

a= Lim&:d—V
At dt

At—0

3-2 Two- Dimension motion with constant acceleration

The position vector for particle moving in the xy-plane can be
written:
r=xi+yj
The velocity of the particle can be obtained from:
dr dx- dy-

v———g(xﬂ ])=—|+—j
dt dte 07 dt |t
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v=v V]
We can apple the eq's of motion to the x and y component of the

velocity vector, substituting
vV, =Vv,+at , v, =V +at
We obtain the final velocity at any time t:
vV, =(v, + axt)f+ (v, + ay)]
=(v, i+v, )+ (a,i+a, )t
V.=V +at

. : 1
Similarly, from equation X, =X, +int+§axt2. We know that the x

and y coordinates of a particle moving with constant acceleration are:

1 1
X, =X, +vxit+5axt2 AERY +vyit+§ayt2
Obtain:

rr=(x +v,_t +%axt2)’i\+(yi +V t +%ayt2)]
= (xif+yi])+ (V. ?+vyi])t+%(ax?+ay]) t?

1
rf:ri+vit+§at2

This equation tells us that the displacement vector Ar=r, +T1. is the
vector sum of a displacement V.t arising from the initial velocity of the

: : 1 : :
particle and a displacement Eaxt2 resulting from the uniform

acceleration of particle
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3-3 Projectile Motion

The two assumption with projectile motion are:
(1) The free fell acceleration g is constant over the range of motion
and is direction downward.
(2) The effect of air resistance is negligible.

The path of projectile is a parabola.
At t=0, the projectile leaves the origin (X, =Yy, =0) with speed V. and

makes an angle 0, with the horizontal

5. €080 =— =V =V.COSO. .oceerirnen )
vV,
: V., .
SINO, =—-=vV, =Vvsino, ... (2)
2
1 5
WX =X 4V T +§axt ................ (3)
1 .
Y, =Y, +V,t +§ayt ................ (4)

Substituting eq.(1) into eq.(3) with X, =0 and a_, =0, we find that:

X, =V, t=(v,c080, )t ... (5)
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Substituting eq.(2) into eq.(4) and using y=0 and a, =-g, we

obtain:
: 1 .,
Y, =(v,sing, )t —Egt .................... (6)
From eq.(5)obtain:
X, =V, c0s0,t St=—l (7)
V, C0s 0,

Now substitute eq.(7) into eq.(6),this gives:

[ v,sin®g, x—ég X* ®)
y= —Vi c0s6 5 —Vf ey
9 2
=(tan 0 )X —| ———— [ X* e 9
y = (tan6)) (MCOSZGJ (9)

Where 0<0 <g

This equation is equivalent to parabola form y = ax — bx*

From the expression above, we see that the projectile motion is the
superposition of two motion:
(1) Constant velocity motion in the horizontal direction.

(2) Free fall motion in the vertical direction.

From the diagram, the peak point ¢, which has Cartesian coordinates

R
(E’ h), and the point E, which has coordinates (R,0).
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The distance (R) is called the horizontal range of the projectile, and (h)

it's maximum height.

At the peak, v , = 0, then

Use v , =V, +al obtain:

0= visinE)i—gtC:>tC:ViSInei .............. (10)
g

Substituting eq.(10) into eq.(4) and replacing Yy, =Yy with (h) , we
obtain:

h=(v sin®) Vv, sin 6, _Eg(vi sin ei)z

g 2 g
o VSO (12)
29

Now, use eq.(3) and setting R= X, at t =t_, we find

R =(v, cos0,)2t = (v, cose)i)m
g
V*sin 20
s (12)
g
The maximum value of R from eq.(12) is

Rmax - V_IZ
g

where sin20=1 when 20=90" therefore R
IS maximum when 0, = 45",



