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Chapter Three 

Motion in two dimension  
 

3-1  The Displacement, velocity and acceleration    
 

A particle moving in xy-plane is located with the position vector r 
drawn from the origin to the particle. The displacement of the particle as 
it moves from A to B in the time interval. 
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The instantaneous acceleration a is : 
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3-2  Two- Dimension motion with constant acceleration   
 

The position vector for particle moving in the xy-plane can be 

written: 

        r = x î + y ĵ   

The velocity of the particle can be obtained from: 
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      v = ĵvîv
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We can apple the eq's of motion to the x and y component of the 

velocity vector,  substituting  
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 We obtain the final velocity at any time t: 
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v ĵ ) + ( xa î +
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Similarly, from equation 2
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and y coordinates of a particle moving with constant acceleration are: 
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This equation tells us that the displacement vector if rrr +=D  is the 

vector sum of a displacement iv t arising from the initial velocity of the 

particle and a displacement 2

x ta
2
1

 resulting from the uniform 

acceleration of particle    
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3-3 Projectile Motion      vy           v 
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The two assumption with projectile motion are: 

(1) The free fell acceleration g is constant over the range of motion 

and is direction downward.  

(2)  The effect of air resistance is negligible.  

The path of projectile is a parabola. 

 At t=0, the projectile leaves the origin ( 0yx ii == ) with speed iv and 

makes an angle iq with the horizontal 
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Substituting  eq.(1) into eq.(3) with ,0aand0x xi ==  we find that: 
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Substituting  eq.(2) into eq.(4) and using ,gaand0y
y

-==  we 

obtain:  
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Now substitute eq.(7) into eq.(6),this gives: 
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This equation is equivalent to parabola form 2bxaxy -=  

From the expression  above, we see that the projectile motion is the 

superposition of two motion: 

(1) Constant velocity motion in the horizontal direction. 

(2) Free fall motion in the vertical direction. 

 

From the diagram, the peak point c, which has Cartesian coordinates 

( h,
2
R

), and the point E, which has coordinates (R,0). 
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The distance (R) is called the horizontal range of the projectile, and (h) 

it's maximum height. 

At the peak, then,0v
0y
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 Substituting eq.(10) into eq.(4) and replacing cf yy = with (h) , we 

obtain: 
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Now, use eq.(3) and setting R@ fx at ctt =  , we find  
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The maximum value of R from eq.(12) is  
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