Classical Mechanics- first stage-2017-2018-2nd semester Prof.Dr. Fouad A. Majeed

Problems and Questions

Q.1: A particle moving in the xy- plane undergoes a displacement $d\vec{r} = 2\hat{\imath} + 3\hat{\jmath}m$, as a constant force $\vec{F} = 5\hat{\imath} + 2\hat{\jmath}N$, acts on the particle

- 1. Calculate the magnitude of the displacement and that of the force.
- 2. Calculate the work done by the force \vec{F} .
- 3. Find the angle between \vec{F} and $d\vec{r}$.

Q.2: A particle of mass m initially at rest, is acted on by the force

 $F = F_0 \left[T^2 - \frac{(2t - T)^2}{T^2} \right]$ during the interval $0 \le t \le T$, prove that the velocity of particle at the end of the interval is $\frac{2F_0T}{3m}$

Q.3: A 6Kg block initially is pulled to the right a long a horizontal, frictionless surface by a constant horizontal force of 12N. Find the speed of the block after it has moved 3m.

- Q.4: A block of mass 1.6Kg is attached to horizontal spring that has a force of
- $1 \times 10^3 \left(\frac{N}{m}\right)$. The spring compressed 2cm and then released from rest
- a. Calculate the speed of the block as it passes through the equilibrium position x = 0, if the surface is frictionless
- b. Calculate the speed of the block as it passes through the equilibrium position if a constant frictional force of 4N retards its motion from the moment it is release.