# Pesticides

Dr. Katherine Squibb Program in Toxicology NURS 678 - Applied Toxicology February 27, 2002



Dichlorodiphenylethanes



Cyclodienes

Pesticides are chemicals that are used to kill pests:

Insecticides target harmful or destructive insects Herbicides target weeds Fungicides target fungi Rodenticides target rodents Acaricides target acarose (mites)

Chemical structures differ within categories as well as between categories. Thus toxicity to humans can vary widely within each group.

## **Pesticide Use: An Old Practice**

| 1000 BC      | Chinese used sulfur as a fumigant       |
|--------------|-----------------------------------------|
| <b>1800s</b> | Europeans used sulfur as a fungicide to |
|              | control powdery mildew on fruit         |
| 2001         | Sulfur still used in California today   |

16th century Japanese mixed poor quality whale oil with vinegar to spray on rice paddies to prevent development of insect larvae by weakening the cuticle

17th century Water extracts of tobacco leaves were sprayed on plants to kill insects

Nux vomica, the seed of *Strychnos nuxmomica* (strychnine) used to kill rodents

### **Pesticide Use: An Old Practice**

**19th century** 

Insecticides isolated from plants included rotenone from the root of *Derris eliptica* and pyrethrum extracted from flowers of chrysanthemums

Arsenic trioxide used as a weed killer, esp. dandelions

**Copper arsenite (Paris Green) used for control of Colorado beetle** 

Bordeaux mixture (copper sulfate, lime and water) used to combat vine downy mildew

## **Pesticide Use: An Old Practice**

- 20th century Sulfuric acid (10%) used to destroy dicotyledonous weeds without harming monocotyledonous cereal grains and other cultivated plants with waxy coat on leaves
- 1920sPublic concern because some treated fruits and<br/>vegetables were found to contain pesticide residues
- Post WWII Pesticide development and use increased dramatically in agriculture and public health.

Widespread use of pesticides for insect control to prevent transmission of diseases such as typhus, river blindness and malaria

Need to make risk/benefit decisions

## **Toxicity of Pesticides**

Must remember that pesticides are inherently toxic.

Many different pesticides in use with very different modes of action and levels of toxicity

|       |                                             | LD <sub>50</sub> FOR THE RAT (mg/kg BODY WEIGHT) |          |          |          |
|-------|---------------------------------------------|--------------------------------------------------|----------|----------|----------|
|       |                                             | ORAL                                             |          | DERMAL   |          |
| CLASS |                                             | SOLIDS                                           | LIQUIDS  | SOLIDS   | LIQUIDS  |
| Ia    | Extremely hazardous                         | ≤5                                               | ≤20      | ≤10      | ≤40      |
| Ib    | Highly hazardous                            | 5-50                                             | 20-200   | 10-100   | 40-400   |
| II    | Moderately hazardous                        | 50-500                                           | 200-2000 | 100-1000 | 400-4000 |
| III   | Slightly hazardous                          | >500                                             | >2000    | >1000    | >4000    |
| III+  | Unlikely to present<br>hazard in normal use | >2000                                            | >3000    | -        | -        |

Table 22–13 The WHO Recommended Classification of Pesticides by Hazard

SOURCE: From Copplestone, 1988.

WHO (1990) estimated 3 million cases of acute, severe poisonings annually, with 220,000 deaths.

In U.S. - 80,000 cases/year. Primarily agricultural workers





### **Basic Classes of Pesticides**

### Insecticides

Organochlorines Organophosphates Carbamate Esters Pyrethroids Botanical Insecticides

### Herbicides

Chlorophenoxy compounds Bipyridyl derivatives

### Rodenticides

Zinc Phosphide Fluoroacetic acid and derivatives -Napthyl Thiourea (ANTU) Anticoagulants

### Fungicides

Hexachlorobenzene Organomercurials Pentachlorophenol Phthalimides Dithiocarbamates

Fumigants Phosphine Ethylene dibromide Dibromochloropropane 
 Table 1
 The main groups of pesticides.

| Group                                                          | Subgroups                                                                      | Examples                                                                                           |
|----------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Organochlorines (OCs)                                          |                                                                                | DDT<br>Endrin<br>Aldrin<br>Dieldrin<br>Endosulfan<br><sub>2</sub> -Hexachlorocyclohexane (lindane) |
| Anticholinesterases                                            | Organophosphates (OPs)                                                         | Malathion<br>Fenitrothion<br>Dichlorvos<br>Diazinon                                                |
|                                                                | Carbamates                                                                     | Carbaryl<br>Aldicarb                                                                               |
| Pyrethrins and synthetic pyrethroids                           |                                                                                | Pyrethrum<br>Permethrin<br>Cypermethrin<br>Flumethrin                                              |
| Natural compounds, other than<br>pyrethrins                    |                                                                                | Abamectin<br>Ivermectin<br>Rotenone<br>Nicotine                                                    |
| Substances which interfere with<br>systems specific to insects | Juvenile hormone analogues<br>Chitin synthesis inhibitors<br>Ecdysone agonists | Cyromazine<br>Diflubenzuron<br>Tebufenozide                                                        |
| Miscellaneous synthetic insecticides                           | Formamidine<br>GABA <sub>A</sub> blocker                                       | Amitraz<br>Fipronil                                                                                |

Ballantyne et al (ed.) General and Applied Toxicology, 1999

### Insecticides

Insecticides act by poisoning the nervous system of target organisms - including man if dose is sufficiently high!



Efferent Nerve

Figure 22-5. A simple, intact reflex arc involving a peripheral, afferent (sensory) neuron, interneurons in the CNS, and a peripheral, efferent (motor) neuron that innervates a muscle.



Figure 22-4. Potential sites of action of classes of insecticides on the axon and the terminal portions of the nerve.

# **Organochlorine Insecticides**

#### Table 22-5 Structural Classification of Organochlorine Insecticides



# **Organochlorine Toxicity**

Acute:

- DDT produces tremors and incoordination at low doses and convulsions at higher doses through effects on Na channels
- HCH and cyclodienes produce convulsions as first sign of intoxication, and fever, through a central nervous system effect - possibly through disturbances in GABA-mediated inhibitory transmission.

**Chronic:** 

• Apathy, headache, emotional lability, depression, confusion and irritability

**Carcinogenicity:** 

• OCs have been weakly linked with non-Hodgkin's lymphoma

**Organochlorine: DDT** 

DDT (1,1,1-trichloro-2,2-bis (p-chlorophenyl)ethane

- First synthesized in 1874
- Used to kill moths and carpet beetles in 1939
- Used on humans to control typhus epidemic by killing lice in Italy in winter of 1943-1944
- Used extensively from 1940s to 1960s in: agriculture and forestry building and structural protection from termites disease prevention in humans

### **Organochlorine: DDT**

**Mammalian Toxicity:** 

- DDT is a Class II pesticide: Oral LD<sub>50</sub> is 250 mg/kg
- As little as 10 mg/kg will produce signs of poisoning in man
- DDT causes repetitive discharge of axonal action potentials in response to a single stimulus





Figure 22-7. Proposed sites of action of DDT on (1) reducing pt tassium transport through pores; (2) inactivating sodium channclosure; (3) inhibiting sodium-potassium and calcium-magnesiu. ATPases; and (4) calmodulin-calcium binding with release of neurtransmitter.

### TABLE 79-1. CATEGORIES OF ORGANOCHLORINE PESTICIDES AND TOXIC POTENTIAL

|                                                                                                                                                                                 | ACUTE ORAL TOXICITY                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| DDT and analogs<br>DDT<br>Methoxychlor                                                                                                                                          | Low to moderate<br>Low                                                          |
| Benzene hexachloride<br>Gamma-hexachlorobenzene (Lindane)                                                                                                                       | Moderate                                                                        |
| Cyclodienes and related compounds<br>Aldrin<br>Chlordane<br>Chlordecone (Kepone)<br>Dieldrin<br>Endosulfan (Thiodan)<br>Endrin<br>Heptachlor<br>Isobenzan<br>Mirex (Dechlorane) | High<br>Moderate<br>Moderate<br>High<br>High<br>High<br>Moderate<br>High<br>Low |
| Toxaphene and related compounds<br>Toxaphene                                                                                                                                    | Moderate                                                                        |



#### Cyclodienes

Figure 22-8. Proposed sites of action of cyclodiene-type organochlorine insecticides on chloride ion transport by antagonizing GABA receptors in the chloride channel as well as inhibition of  $Ca^{2+}$ ,  $Mg^{2+}$ -ATPase.

# **Cyclodienes and BHC (Lindane)**

- More toxic to mammals than DDT
- Are absorbed through skin to a much greater extent than DDT
- Produce convulsions by acting as non-competitive antagonist of GABA receptors in CNS

Kepone (Chlordecone)

Occupational exposure occurred from mishandling in plant in Hopewell, VA in 1975

76 of 148 workers developed a neurological syndrome called "Kepone shakes"

Latency of onset - 30 days

**Persistent for months after cessation of exposure** 

Pathology: Damage to Swann cells which caused abnormal myelination

Major target organs: CNS, liver, adrenals, testes

**Environmental Problems with Organochlorine Pesticides** 

Chemical Properties: low volatility chemical stability lipid solubility slow biotransformation and degradation

## **Good qualities for pesticides = Bad environmentally**

Persistent, Bioconcentrate, Biomagnify

**Environmental Problems with Organochlorine Pesticides** 

Ecological Effects: Interference with reproductive success of organisms high on the food chain, especially fish eating birds (osprey, pelicans, falcons and eagles)

> Ortho and para isomers of DDT have estrogenic effects: compete with estradiol for binding to estrogen receptors in uterine cytosol

Estrogenic and enzyme inducing properties of DDT cause changes in steroid metabolism. Alters ability of birds to mobilize Ca to produce strong egg shells Environmental Problems with Organochlorine Pesticides

**Organochlorine pesticides now banned in North America and Europe, but still used in developing countries because:** 

- inexpensive to manufacture
- highly effective
- relatively safe to humans

**Risk/benefit weighted in favor of control of insects for better food production and disease control** 

# **Acetylcholinesterase Inhibitors: Organophosphates and Carbamates**

Ecological toxicity



Degrade relatively rapidly in the environment, **but** Class I toxicity rating in humans.

Many fatal poisonings in 1950s as parathion replaced DDT due to improper training of pesticide applicators

(C,H,O),P(S)O NO:

Parathion (Diethyl p-nitrophenyl phosphorothionate)

(CH,0),P(0)OCH-Cl;

Dichlorvos

(Dimethyl Z-dichlorovinyl phosphate)

(CH<sub>1</sub>O)<sub>1</sub>P(S)SCHCOOC<sub>1</sub>H<sub>1</sub> | CH<sub>1</sub>COOC<sub>1</sub>H<sub>1</sub>

Malathion [0,0-dimethyl S-bis(carboethoxy)ethyl phosphorodithioate]



Diazinon (Diethyl 2-isopropyl-4-methyl-6pyrimidinyl phosphorothionate)



Azinphosmethyl (Guthion) (0.0-dimethyl S-(4-oxo-1.2.3-benzotriazin-3(4H)ylmethyl phosphorodithioate)

(CH, O), P(S)O

Ronnel (Dimethyl 3,4,6-trichlorophenyl phosphorothionate) (CH<sub>1</sub>O)<sub>2</sub>P(O)OC-C-C(O)N(CH<sub>1</sub>)<sub>2</sub> | CH<sub>1</sub>

Bidrin (Dimethyl 3-hydroxy-N,N-dimethyl-c/scrotonamide phosphate)

> 0 0 || || (C1H3O);POP(OC1H3);

Tepp (Diethyl phosphoric anhydride)

Fig. 2. Names and chemical stuctures of some common organophosphorus insecticides.







### Organophosphorus Esters



**Carbamate Esters** 

н R-0-С-N-СН

| Y | alkyl  | 7) aryl  |   | aryi  |
|---|--------|----------|---|-------|
| ^ | elkozy | aikyi    | " | aikyi |
| Y | amido  | ) alkexy |   |       |

Figure 22-10. The basic backbone structures of the two types of anticholinesterase class insecticides, the organophosphorus and the carbamate esters.

сн, 0 сн, - с- сн = м-0-с-м-сн, сн, н

> Aldicare (Termit)





Bendiocarta (Ficam)

1,3-8evzodioxol-4-ol, 2,2-dimethyl-, methylcarbamate



Carbaryl (Sevin)

I-Nephthalenol, methylcarbamate



Aminocarb (Maracal)

Phenol, 4-I dimethylamino)-J-methyl-, methylcarbamate

Names and chemical structures of some carbamate insecticides.



| SERVOUS TISSUE AND RECEPTORS                                                      | SITE AFFECTED           | MANIFESTATIONS                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parasympatheic autonomic<br>(muscarinic receptors)<br>postganglionic nerve fibers | Exocrine glands<br>Eyes | Increased salivation, lacrimation, perspiration<br>Miosis (pinpoint and nonreactive), ptosis, blurring of<br>vision, conjunctival injection, "bloody tears"                                            |
|                                                                                   | Gastrointestinal tract  | Nausea, vomiting, abdominal tightness, swelling and<br>carmps, diarrhea, tenesmus, fecal incontinence                                                                                                  |
|                                                                                   | Respiratory tract       | Excessive bronchial secretions, rhinorrhea, wheezing,<br>edema, tightness in chest, bronchospasms, broncho-<br>constriction, cough, bradypnea, dyspnea                                                 |
|                                                                                   | Cardiovascular system   | Bradycardia, decrease in blood pressure                                                                                                                                                                |
|                                                                                   | Bladder                 | Urinary frequency and incontinence                                                                                                                                                                     |
| Parasympathetic and sympathetic<br>autonomic fibers<br>(nicotinic receptors)      | Cardiovascular system   | Tachycardia, pallor, increase in blood pressure                                                                                                                                                        |
| Somatic motor nerve fibers<br>(nicotine receptors)                                | Skeletal muscles        | Muscle fasciculations (eyelids, fine facial muscles),<br>cramps, diminished tendon reflexes, generalized muscle<br>weakness in peripheral and respiratory muscles,<br>paralysis, flaccid or rigid tone |
|                                                                                   |                         | Restlessness, generalized motor activity, reaction to<br>acoustic stimuli, tremulousness, emotional lability,<br>ataxia                                                                                |
| Brain (acetylcholine receptors)                                                   | Central nervous system  | Drowsiness, lethargy, fatigue, mental confusion, inability<br>to concentrate, headache, pressure in head, generalized<br>weakness                                                                      |
|                                                                                   |                         | Coma with absence of reflexes, tremors, Cheyne-Stokes<br>respiration, dyspnea, convulsions, depression of<br>respiratory centers, cyanosis                                                             |

Signs and Symptoms of Anticholinesterase Insecticide Poisoning

SOURCE: From Ecobichon and Joy, 1982.

### Organophosphorus Ester



Figure 22-13. The interaction between an organophosphorus or carbamate ester with the serine hydroxyl group in the active site of the enzyme acetylcholinesterase (E-OH).

The intermediate, unstable complexes formed before the release of the "leaving" groups (ZH and XOH) are not shown. The dephosphorylation or decarbamoylation of the inhibited enzyme is the rate-limiting step to forming free enzyme.

### **Reversible versus Non-reversible Effects**



Rate at which pesticide molecule leaves the enzyme active site is proportional to it toxicity.  $k_3 = \sec$  for acetylcholine = 30 min for carbamates

= 17 hr for organophosphate

"Aging" of the enzyme/pesticide complex is also possible with organophosphates. With time a covalent bond is formed, making the inhibition of the enzyme activity permanent

### **Treatment of Acetylcholinesterse Insecticide Poisoning**

#### Table 22-9 Classification and Treatment of Organophosphorus Insecticide Poisoning Based on Plasma Pseudocholinesterase Activity Measurements

| SSIFICATION OF   | ENZYME ACTIVITY<br>(% OF NORMAL) | TREATMENT                                                                  |                                                                            |  |
|------------------|----------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|--|
|                  |                                  | ATROPINE                                                                   | PRALIDOXIME                                                                |  |
| Mild<br>Moderate | 20–50<br>10–20                   | 1.0 mg SC<br>1.0 mg IV every 20 to 30 min<br>until sweating and salivation | 1.0 g IV over 20 to 30 min                                                 |  |
|                  |                                  | disappear and slight flush and<br>mydriasis appear                         |                                                                            |  |
| Severe           | 10                               | 5.0 mg IV every 20 to 30 min<br>until sweating and salivation              | 1.0 g IV as above. If no improvement<br>administer another 1.0 g IV. If no |  |
|                  | *                                | and mydriasis appear                                                       | improvement, start IV infusion at<br>0.5 g/h                               |  |

.... RCE: From Ecobichon et al., 1977.

Treatment with atropine counteracts muscarinic effects

Pralidoxime given in the case of organophosphates to prevent aging of the enzyme/pesticide complex



Figure 22-18. The pralidoxime-catalyzed reactivation of an organophosphate-inhibited molecule of AChE, showing the release of active enzyme and the formation of an oxime-phosphate complex.

**Pyrethroid Insecticides** 

Synthetic pyrethroids available in the 1980s rapidly accounted for 30% of the worldwide market due to lower toxicity

**Replaced natural pyrethroid preparations which often caused allergic reactions such as contact dermatitis or asthma** 

Pyrethroids fall into two categories based on their acute toxicity: Type I Peripheral and CNS effects Type II Primarily CNS effects





These are (1) by inhibition of  $Ca^{2+}$ ,  $Mg^{2+}$ -ATPase, thereby interfering with calcium removal from the ending; (2) questionable binding to GABA receptors in the chloride channel; (3) inhibition of calmodulir that binds calcium ions, thereby increasing the levels of free calcium in the nerve ending to act on neurotransmitter release.

|                                     | SIGNS AND SYMPTOMS |                                                            |                                                                                                                   |                                                                                                 |
|-------------------------------------|--------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
|                                     | STRUCTURE          | COCKROACH                                                  | RAT                                                                                                               | CHEMICALS                                                                                       |
| Type I syndrome<br>("T" syndrome)   | R OF               | Restlessness<br>Incoordination<br>Prostration<br>Paralysis | Hyperexcitation<br>Sparring<br>Aggressiveness<br>Enhanced startle<br>response<br>Whole body tremor<br>Prostration | Pyrethrin I<br>Allethrin<br>Tetramethrin<br>Kadethrin<br>Resmethrin<br>Phenothrin<br>Permethrin |
| Type II syndrome<br>("CS" syndrome) |                    | Hyperactivity<br>Incoordination<br>Convulsions             | Burrowing<br>Dermal tingling<br>Clonic seizures<br>Sinuous writhing<br>Profuse salivation                         | Cypermethrin<br>Fenpropanthrin<br>Deltamethrin<br>Cyphenothrin<br>Fenvalerate<br>Fluvalinate    |

#### Table 22-10 Classification of Pyrethroid Ester Insecticides on the Basis of Chemical Structure and Observed Biological Activity

Pyrethroid Insecticides

Human toxicity:

- Cutaneous paresthesia observed in workers spraying -cyano type pyrethroid. Stinging or burning sensation on skin, progressing to tingling and numbness lasting 12-18 hr
- Occupational exposure has result in dizziness in addition burning skin. At higher doses, can develop convulsions and loss of consciousness. Seizures can last up to 2 to 3 weeks.

**Metabolism of Pyrethroid Insecticides:** 

- Low toxicity in large part due to rapid metabolism
- Hydrolytic enzymes (non-specific carboxyl esterases) deactivate pyrethroid compounds
- Toxicity to insects is often increased by addition of piperonyl butoxide, a monooxygenase inhibitor. This enhances potency 10 to 300 fold.

### **Botanical Insecticides**

Nicotine **Bold as Black Leaf 40** Extremely toxic: Oral LD<sub>50</sub> is 50-60 mg/kg Is readily absorbed through skin ٩. Mimics the action of acetylcholine **Retinoids Isolated from derris root Toxicity varies greatly in different species** Very toxic to fish - Used to paralyze fish for capture and consumption **Blocks nerve conduction by inhibiting** electron transport in mitochondria Low acute toxicity in humans, but causes allergic reactions

# Herbicides

- Generally low toxicity to mammals.
- Mechanisms of action toward plants primarily involve phyto-processes.
- Can be dermal irritants since often strong acids, amines, esters and phenols.
- Can cause contact dermatitis in sub-populations of sensitive people.

# Herbicides

# Chlorophenoxy Compounds: Mimic the action of auxins, plant hormones that stimulate growth



Figure 22-21. The molecular structure of the three most common chlorophenoxyacetic acid herbicides: 2,4-D, 2,4-dichlorophenoxyacetic acid; 2,4,5-T, 2,4,5-trichlorophenoxyacetic acid; and MCPA, 4-chloro-o-toloxyacetic acid.

# Herbicides

## **Bipyridyl Derivatives**

Paraquat is a very potent, specific pulmonary toxicant

**Diquat is much less toxic** 



**Differential toxicity based on uptake:** 

Paraquat is preferentially accumulated by Type I and Type II alveolar cells by a diamine/polyamine transport system. Diquat is not.

In alveolar cells, paraquat under goes NADPHdependent one-electron reduction to form a free radical

Exposure causes intra-alveolar hemorrhage, congestion and pulmonary fibrosis

# Acute toxicity generally very low in mammals: LD<sub>50</sub> range from 800-10,000 mg/kg

However, most (>90%) fungicides test positive in mutagenicity assays, raising concerns about carcinogenicity

Most cases of human poisonings have resulted from consumption of feed grain.

Hexachlorobenzene: Caused "black sore" syndrome in Turkey Dermal blistering and epidemolysis, infection with pigmented scars and photosensitivity.

> Rats show evidence of immunosuppression and dosedependent increase in hepatic and thyroid tumors. Also perinatal exposure caused enlarged kidneys, hepatomegaly and possible immune system effects

**Organomercurials:** Used to treat seed grain

Peripheral and central nervous system effects seen in two cases:

Iraq - people consumed seed grain

New Mexico - people consumed meat from hogs fed treated grain

**Phthalimides:** 

Low acute toxicity, but similar in structure to thalidomide

Captan is a weak initiator of benign squamous cell papillomas

**Dithiocarbamates:** 

Low acute toxicity, but teratogenic and causes tumors in animals.

Suggestion that exposure can cause Parkinson-type syndrome. Possible breakdown to carbon disulfide which is a known neurotoxicant

### **Fumigants**

Fumigants are highly reactive, non-specific toxicants, so potential for human toxicity is high

**Phosphine:** 

Aluminum phosphide (AP) releases phosphine ( $PH_3$ ) when in contact with moisture. Accidental exposure causes pulmonary irritation, nausea, headache, jaundice and fatigue.

Ethylene Dibromide/Dibromochloropropane (DBCP): Causes pulmonary edema and inflammation at > 200 ppm Repeated exposures causes hepatic and renal damage Chronic exposure causes malignant gastric squamous cell carcinomas in mice and sterility in humans at 5 ppm