
Operating Systems II –4'th Stage-Lecture 7 Lecturer: Hawraa Shareef

22 | P a g e

 Paging
 Paging is a memory-management scheme that permits the physical address space of a

process to be noncontiguous. Paging avoids external fragmentation and the need for

compaction. It also solves the considerable problem of fitting memory chunks of varying

sizes onto the backing store; most memory management schemes used before the introduction

of paging suffered from this problem.

 The problem arises because, when some code fragments or data residing in main memory

need to be swapped out, space must be found on the backing store. The backing store has the

same fragmentation problems discussed in connection with main memory, but access is much

slower, so compaction is impossible. Because of its advantages over earlier methods, paging

in its various forms is used in most operating systems.

 The basic method for implementing paging involves breaking physical memory into fixed-sized

blocks called frames and breaking logical memory into blocks of the same size called pages.

 When a process is to be executed, its pages are loaded into any available memory frames from

the backing store. The backing store is divided into fixed-sized blocks that are of the same size

as the memory frames.

 The hardware support for paging is illustrated in figure below. Every address generated by the

CPU is divided into two parts: a page number (p) and a page offset (d). The page number is

used as an index into a page table.

 The page table contains the base address of each page in physical memory. This base address is

combined with the page offset to define the physical memory address that is sent to the memory

unit.

Paging hardware

The paging model of memory is shown in Figure below.

Operating Systems II –4'th Stage-Lecture 7 Lecturer: Hawraa Shareef

23 | P a g e

Paging model of logical and physical memory.

 The page size (like the frame size) is defined by the hardware. The size of a page is typically

a power of 2, varying between 512 bytes and 16 MB per page, depending on the computer

architecture. The selection of a power of 2 as a page size makes the translation of a logical

address into a page number and page offset particularly easy.

 Example, consider the memory in Figure below. Here, in the logical address, n= 2 and m = 4.

Using a page size of 4 bytes and a physical memory of 32 bytes (8 pages), we show how the

user’s view of memory can be mapped into physical memory.

 Logical address 0 is page 0, offset 0. Indexing into the page table, we find that page 0 is

in frame 5. Thus, logical address 0 maps to physical address 20 [= (5 × 4) + 0].

 Logical address 3 (page 0, offset 3) maps to physical address 23 [= (5 × 4) + 3].

 Logical address 4 is page 1, offset 0; according to the page table, page 1 is mapped to

frame 6. Thus, logical address 4 maps to physical address 24 [= (6 × 4) + 0].

 Logical address 13 maps to physical address 9.

 You may have noticed that paging itself is a form of dynamic relocation. Every logical

address is bound by the paging hardware to some physical address. Using paging is

similar to using a table of base (or relocation) registers, one for each frame of memory.

Operating Systems II –4'th Stage-Lecture 7 Lecturer: Hawraa Shareef

24 | P a g e

Paging example for a 32-byte memory with 4-byte pages.

 When a process arrives in the system to be executed, its size, expressed in pages, is examined.

Each page of the process needs one frame. Thus, if the process requires n pages, at least n frames

must be available in memory. If n frames are available, they are allocated to this arriving process.

The first page of the process is loaded into one of the allocated frames, and the frame number is

put in the page table for this process. The next page is loaded into another frame, its frame

number is put into the page table, and so on (Figure below).

Operating Systems II –4'th Stage-Lecture 7 Lecturer: Hawraa Shareef

25 | P a g e

Free frames. (a) Before allocation. (b) After allocation.

 Since the operating system is managing physical memory, it must be aware of the allocation

details of physical memory—which frames are allocated, which frames are available, how many

total frames there are, and so on. This information is generally kept in a data structure called a

frame table. The frame table has one entry for each physical page frame, indicating whether the

latter is free or allocated and, if it is allocated, to which page of which process or processes.

Hardware Support

 There is a problem which is the time required to access a user memory location The standard

solution to this problem is to use a special, small, fast-lookup hardware cache, called

translation look-aside buffer (TLB). The TLB is associative, high-speed memory. Each

entry in the TLB consists of two parts: a key (or tag) and a value.

 The TLB is used with page tables in the following way. The TLB contains only a few of the

page-table entries. When a logical address is generated by the CPU, its page number is

presented to the TLB. If the page number is found, its frame number is immediately available

and is used to access memory.

 If the page number is not in the TLB (known as a TLB miss), a memory reference to the page

table must be made. When the frame number is obtained, we can use it to access memory. In

addition, we add the page number and frame number to the TLB, so that they will be found

quickly on the next reference. If the TLB is already full of entries, the operating system must

select one for replacement.

 The percentage of times that a particular page number is found in the TLB is called the hit

ratio. An 80-percent hit ratio, for example, means that we find the desired page number in

the TLB 80 percent of the time. If it takes 20 nanoseconds to search the TLB and 100

nanoseconds to access memory, then a mapped-memory access takes 120 nanoseconds when

the page number is in the TLB. If we fail to find the page number in the TLB (20

nanoseconds), then we must first access memory for the page table and frame number (100

nanoseconds) and then access the desired byte in memory (100 nanoseconds), for a total of

Operating Systems II –4'th Stage-Lecture 7 Lecturer: Hawraa Shareef

26 | P a g e

220 nanoseconds. To find the effective memory-access time, we weight the case by its

probability:

 Effective access time = 0.80 × 120 + 0.20 × 220

 = 140 nanoseconds.

 In this example, we suffer a 40-percent slowdown in memory-access time (from 100 to 140

nanoseconds). For a 98-percent hit ratio, we have

 Effective access time = 0.98 × 120 + 0.02 × 220

 = 122 nanoseconds.

 This increased hit rate produces only a 22 percent slowdown in access time.

Paging hardware with TLB.

Protection in paging
 Memory protection in a paged environment is accomplished by protection bits associated with

each frame. Normally, these bits are kept in the page table.

 One bit can define a page to be read–write or read-only. Every reference to memory goes

through the page table to find the correct frame number. At the same time that the physical

address is being computed, the protection bits can be checked to verify that no writes are being

made to a read-only page. An attempt to write to a read-only page causes a hardware trap to the

operating system.

Operating Systems II –4'th Stage-Lecture 7 Lecturer: Hawraa Shareef

27 | P a g e

 One additional bit is generally attached to each entry in the page table: a valid–invalid bit. When

this bit is set to “valid,” the associated page is in the process’s logical address space and is thus a

legal (or valid) page. When the bit is set to“invalid,” the page is not in the process’s logical

address space. Illegal addresses are trapped by use of the valid–invalid bit. The operating system

sets this bit for each page to allow or disallow access to the page.

 Suppose, for example, that in a system with a 14-bit address space (0 to 16383), we have a

program that should use only addresses 0 to 10468. Given a page size of 2 KB, we have the

situation shown in Figure below. Addresses in pages 0, 1, 2, 3, 4, and 5 are mapped normally

through the page table. Any attempt to generate an address in pages 6 or 7, however, will find

that the valid–invalid bit is set to invalid, and the computer will trap to the operating system

(invalid page reference). Notice that this scheme has created a problem. Because the program

extends only to address 10468, any reference beyond that address is illegal. However, references

to page 5 are classified as valid, so accesses to addresses up to 12287 are valid. Only the

addresses from 12288 to 16383 are invalid.

Valid (v) or invalid (i) bit in a page table.

