
1
st
 stage2018 Lect.4

College of Computer Technology

1

System bus.

A computer system consists of three major components: a processor, a memory

unit, and an input/output (I/O) subsystem. Interconnection network facilitates

communication among these three components, as shown in Figure 21. The

interconnection network is called the system bus.

The term “bus” is used to represent a group of electrical signals or the wires that

carry these signals. As shown in Figure 1.5, the system bus consists of three major

components: an address bus, a data bus, and a control bus.

The address bus width determines the amount of physical memory addressable by

the processor. The data bus width indicates the size of the data transferred between the

processor and memory or an I/O device. For example, the Pentium processor has 32

address lines and 64 data lines. Thus, the Pentium can address up to 2
32

, or 4 GB of

memory. Furthermore, each data transfer can move 64 bits of data.

The control bus consists of a set of control signals. Typical control signals

include memory read, memory write, I/O read, I/O write, interrupt, interrupt

acknowledge, bus request, and bus grant. These control signals indicate the type of

action taking place on the system bus. For example, when the processor is writing data

Figure 21 The three main components of a computer system are interconnected by a bus.

1
st
 stage2018 Lect.4

College of Computer Technology

2

into the memory, the memory write signal is generated. Similarly, when the processor

is reading from an I/O device, it generates the I/O read signal.

A bus connects various components in a computer system. Thus buses can be

categorize into:

Internal buses: The processor uses several internal buses to interconnect registers

and the ALU.

External buses: are used to interface with the devices outside a typical processor

system. By our classification, serial and parallel interfaces, Universal Serial Bus

(USB). These buses are typically used to connect I/O devices.

Figure 22 shows dedicated buses connecting the major components of a computer

system. The system bus consists of address, data, and control buses. One problem with

the dedicated bus design is that it requires a large number of wires. We can reduce this

count by using multiplexed buses. For example, a single bus may be used for both

address and data. In addition, the address and data bus widths play an important role in

determining the address space and data transfer rate, respectively.

• Bus Width: Bus width refers to the data and address bus widths. System

performance improves with a wider data bus as we can move more bytes in parallel.

We increase the addressing capacity of the system by adding more address lines.

• Bus Type: As discussed in the last section, there are two basic types of buses:

dedicated and multiplexed.

• Bus Operations: Bus systems support several types of operations to transfer data.

These include the read, write, block transfer, read-modify-write, and interrupt.

1
st
 stage2018 Lect.4

College of Computer Technology

3

Consider, for example, the bus connecting a CPU and memory in a given system.

The size of the memory in that system is 512M word and each word is 32 bits. In such

system, the size of the address bus should be log2 (512×2
20

) = 29 lines.

23- Pipelining.

In each execution cycle the control unit would have to wait until the instruction is

fetched from memory. Furthermore, the ALU would have to wait until the required

operands are fetched from memory. Processor speeds are increasing at a much faster

rate than the improvements in memory speeds. Thus, we would be wasting the control

unit and ALU resources by keeping them idle while the system fetches instructions

and data. How can we avoid this situation? Let’s suppose that we can prefetch the

instruction. That is, we read the instruction before the control unit needs it. These

prefetched instructions are typically placed in a set of registers called the prefetch

buffers. Then, the control unit doesn’t have to wait. How do we do this prefetch?

Given that the program execution is sequential, we can prefetch

Figure 22: The system bus model of a computer system.

1
st
 stage2018 Lect.4

College of Computer Technology

4

the next instruction in sequence while the control unit is busy decoding the current

instruction. Pipelining generalizes this concept of overlapped execution. Similarly,

prefetching the required operands avoids the idle time experienced by the ALU.

Figure 23 shows how pipelining helps us improve the efficiency. The instruction

execution can be divided into five parts. In pipelining terminology, each part is called

a stage. For simplicity, let’s assume that execution of each stage takes the same time

(say, one cycle). As shown in Figure 23, each stage spends one cycle in executing its

part of the execution cycle and passes the instruction on to the next stage. Let’s trace

the execution of this pipeline during the first few cycles. During the first cycle, the

first stage S1 fetches the instruction. All other stages are idle. During Cycle 2, S1

passes the first instruction I1 to stage S2 for decoding and S1 initiates the next

instruction fetch. Thus, during Cycle 2, two of the five stages are busy: S2 decodes I1

while S1 is busy with fetching I2. During Cycle 3, stage S2 passes instruction I1 to

stage S3 to fetch any required operands. At the same time, S2 receives I2 from S1 for

decoding while S1 fetches the third instruction. This process is repeated in each stage.

As you can see, after four cycles, all five stages are busy. This state is called the

pipeline full condition. From this point on, all five stages are busy.

Figure 23 A pipelined execution of the basic execution cycle

1
st
 stage2018 Lect.4

College of Computer Technology

5

This figure clearly shows that the execution of instruction I1 is completed in

Cycle 5. Thus, executing six instructions takes only 10 cycles. Without pipelining, it

would have taken 30 cycles.

Notice from this description that pipelining does not speed up execution of

individual instructions; each instruction still takes five cycles to execute. However,

pipelining increases the number of instructions executed per unit time; that is,

instruction throughput increases.

Pipelining a computer architecture designed so that all parts of circuit are always

working, so that no part of the circuit is stalled waiting from another part. Pipelining

allows overlapped execution to improve throughput.

