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Swapping: 
 A process must be in memory to be executed.  

 A process, however, can be swapped temporarily out of memory to a backing store and then 

brought back into memory for continued execution.  

 For example, assume a multiprogramming environment with a round-robin CPU-scheduling 

algorithm. When a quantum expires, the memory manager will start to swap out the process that just 

finished and to swap another process into the memory space that has been freed. In the meantime, the 

CPU scheduler will allocate a time slice to some other process in memory. When each process finishes 

its quantum, it will be swapped with another process. Ideally, the memory manager can swap 

processes fast enough that some processes will be in memory, ready to execute, when the CPU 

scheduler wants to reschedule the CPU. In addition, the quantum must be sufficiently large that 

reasonable amounts of computing are done between swaps. 

  

 

 
 

 A variant of this swapping policy is used for priority-based scheduling algorithms. If a higher-priority 

process arrives and wants service, the memory manager can swap out the lower-priority process and 

then load and execute the higher-priority process. When the higher-priority process finishes, the 

lower-priority process can be swapped back in and continued. This variant of swapping is sometimes 

called roll out, roll in. 

 

 Normally, a process that is swapped out will be swapped back into the same memory space it 

occupied previously. This restriction is dictated by the method of address binding. If binding is 

done at assembly or load time, then the process cannot be easily moved to a different location. If 

execution-time binding is being used, however, then a process can be swapped into a different 

memory space, because the physical addresses are computed during execution time. 

 

 Swapping requires a backing store. The backing store is commonly a fast disk. It must be large 

enough to accommodate copies of all memory images for all users, and it must provide direct 

access to these memory images. The system maintains a ready queue consisting of all processes 

whose memory images are on the backing store or in memory and are ready to run.  

 

 Whenever the CPU scheduler decides to execute a process, it calls the dispatcher. The dispatcher 

checks to see whether the next process in the queue is in memory. If it is not, and if there is no 
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free memory region, the dispatcher swaps out a process currently in memory and swaps in the 

desired process. It then reloads registers and transfers control to the selected process. 
 

 The context-switch time in such a swapping system is fairly high. To get an idea of the context-

switch time, let us assume that the user process is 100 MB in size and the backing store is a 

standard hard disk with a transfer rate of 50 MB per second. The actual transfer of the 100-MB 

process to or from main memory takes 

  

                  100 MB/50 MB per second = 2 seconds. 

 

 Notice that the major part of the swap time is transfer time. The total transfer time is directly 

proportional to the amount of memory swapped. 

  If we have a computer system with 4 GB of main memory and a resident operating system 

taking 1 GB, the maximum size of the user process is 3 GB.  

 

 

Memory Allocation 

 One of the simplest methods for allocating memory is to divide memory into several fixed-sized 

partitions. Each partition may contain exactly one process. Thus, the degree of 

multiprogramming is bound by the number of partitions.  

 

 In this multiple partition method, when a partition is free, a process is selected from the input 

queue and is loaded into the free partition. When the process terminates, the partition becomes 

available for another process. This method was originally used by the IBM OS/360 operating 

system (called MFT); it is no longer in use.  

 

 In the variable-partition scheme, the operating system keeps a table indicating which parts of 

memory are available and which are occupied. 

 

 Initially, all memory is available for user processes and is considered one large block of 

available memory, a hole. Eventually, as you will see, memory contains a set of holes of 

various sizes. 

 

 As processes enter the system, they are put into an input queue. The operating system takes into 

account the memory requirements of each process and the amount of available memory space in 

determining which processes are allocated memory. When a process is allocated space, it is 

loaded into memory, and it can then compete for CPU time. When a process terminates, it 

releases its memory, which the operating system may then fill with another process from the 

input queue. 

 

 In general, as mentioned, the memory blocks available comprise a set of holes of various sizes 

scattered throughout memory. When a process arrives and needs memory, the system searches 

the set for a hole that is large enough for this process. If the hole is too large, it is split into two 

parts. One part is allocated to the arriving process; the other is returned to the set of holes. 

When a process terminates, it releases its block of memory, which is then placed back in the set 

of holes.  

 

 If the new hole is adjacent to other holes, these adjacent holes are merged to form one larger 

hole. At this point, the system may need to check whether there are processes waiting for 
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memory and whether this newly freed and recombined memory could satisfy the demands of 

any of these waiting processes. 

 

 This procedure is a particular instance of the general dynamic storage allocation problem, 

which concerns how to satisfy a request of size n from a list of free holes. There are many 

solutions to this problem. The first-fit, best-fit, and worst-fit strategies are the ones most 

commonly used to select a free hole from the set of available holes. 

 

 First fit. Allocate the first hole that is big enough. Searching can start either at the 

beginning of the set of holes or at the location where the previous first-fit search ended. 

We can stop searching as soon as we find a free hole that is large enough  

 

 Best fit. Allocate the smallest hole that is big enough. We must search the entire list, 

unless the list is ordered by size. This strategy produces the smallest leftover hole. 

 

 Worst fit. Allocate the largest hole. Again, we must search the entire list, unless it is 

sorted by size. This strategy produces the largest leftover hole, which may be more 

useful than the smaller leftover hole from a best-fit approach. 

 

 Simulations have shown that both first fit and best fit are better than worst fit in terms of 

decreasing time and storage utilization. Neither first fit nor best fit is clearly better than the 

other in terms of storage utilization, but first fit is generally faster. 

 

 

 
 

Fragmentation 

     Both the first-fit and best-fit strategies for memory allocation suffer from external 

fragmentation. As processes are loaded and removed from memory, the free memory space is 

broken into little pieces. External fragmentation exists when there is enough total memory space to 

satisfy a request but the available spaces are not contiguous; storage is fragmented into a large 

number of small holes.  

This fragmentation problem can be severe. In the worst case, we could have a block of free (or 

wasted) memory between every two processes. If all these small pieces of memory were in one big 

free block instead, we might be able to run several more processes. 
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One solution to the problem of external fragmentation is compaction. The goal is to shuffle the 

memory contents so as to place all free memory together in one large block. Compaction is not 

always possible, however. If relocation is static and is done at assembly or load time, compaction 

cannot be done; 

Compaction is possible only if relocation is dynamic and is done at execution time. If addresses are 

relocated dynamically, relocation requires only moving the program and data and then changing the 

base register to reflect the new base address. When compaction is possible, we must determine its 

cost. The simplest compaction algorithm is to move all processes toward one end of memory; all 

holes move in the other direction, producing one large hole of available memory. This scheme can be 

expensive. 

 

Another possible solution to the external-fragmentation problem is to allowing a process to be 

allocated physical memory wherever such memory is available.  

 

 

 

 


