University of Babylon College of Engineering Department of Environmental Engineering Engineering Analysis I (ENAN 103)

Solution of Nonlinear Equation Secant Method

Undergraduate Leve, 3th Stage

Mr. Waleed Ali Tameemi College of Engineering/ Babylon University M.Sc. Civil Engineering/ the University of Kansas/ USA

2016-2017

Lecture Outline

1.0 Introduction

2.0 Closed Methods

- 2.1 Bisection Method
- 2.2 False-Point Position Method

3.0 Open Methods

- 3.1 Newton-Raphson Method
- 3.2 Secant Method

4.0 Summary

3.2 – Secant Method

The following steps are required in estimating the root.

- 1. Assume two inertial values for the root for x_{i-1} and x_i .
- 2. Evaluate $f(x_i)$.
- 3. Calculate the estimated root (x_{i+1}) as following:

$$x_{i+1} = x_i - \frac{f(x_i) \times (x_i - x_{i-1})}{f(x_i) - f(x_{i-1})}$$

- 4. Calculate the error value, $f(x_{i+1})$, which represents the corresponding value of x_{i+1} .
- 5. Compare the error value, $|f(x_{i+1})|$, with the desire accuracy (\in).

If $|f(x_{i+1})| \le \epsilon$ then x_{i+1} is the required root (accurate enough).

Otherwise go to step 3.

Ex1: Find a root for $f(x) = x^3 - 0.165x^2 + 3.993 \times 10^{-4}$ with accuracy equal to $\epsilon = 0.000001$.

Solution:

Step 1:

Assume $x_{-1} = -0.02$ $x_0 = 0.05$

Step 2:

$$f(x_{i-1}) = f(-0.02) = -0.02^3 - 0.165 \times -0.02^2 + 3.993 \times 10^{-4} = 0.000325$$
$$f(x_i) = f(0.05) = 0.05^3 - 0.165 \times 0.05^2 + 3.993 \times 10^{-4} = 0.000112$$

Step 3:

$$x_{i+1} = x_i - \frac{f(x_i) \times (x_i - x_{i-1})}{f(x_i) - f(x_{i-1})} = 0.05 - \frac{0.000112 \times (0.05 \ (-0.02))}{(0.000112 - 0.000325)} = 0.08666$$

Step 4:

$$f(x_{i+1}) = f(0.08666) = x^3 - 0.165x^2 + 3.993 \times 10^{-4} = -0.00019$$

Step 5:

$$|f(x_1)| \ge \in \rightarrow$$
 (not enough accurat) go to step 3

Step #	x _i	$f(x_1)$	$f(x_{i-1})$	x_{i+1}	$f(x_{i+1})$	$ f(x_r) - \in$
0	-0.02					
1	0.05	0.000112	0.000325	<mark>0.08666</mark>	-0.00019	-0.000179004
2	<mark>0.086656</mark>	-0.00019	0.000112	0.06362	-1.1E-05	-1.07014E-06
3	<mark>0.063624</mark>	-1.1E-05	-0.00019	0.06219	1.66E-06	8.33586E-06
4	0.062191	1.66E-06	-1.1E-05	<mark>0.06238</mark>	-5.4E-09	9.99459E-06

The required root is equal to x=0.06238.

Homework 5

4.0 – Summary

The roots of nonlinear equations can be estimated numerically. In general, the closed method (Bisection and False Position methods) are guaranteed for convergence, while the open methods (Newton-Raphson and Secant methods) are not guaranteed for convergence. In addition, the open methods converge faster than the closed methods.