

Solution of Nonlinear EquationFalse-Point Position Method

Undergraduate Leve, 3th Stage

Mr. Waleed Ali Tameemi
College of Engineering/ Babylon University
M.Sc. Civil Engineering/ the University of Kansas/ USA

Lecture Outline

- 1.0 Introduction
- 2.0 Closed Methods
 - 2.1 Bisection Method
 - 2.2 False-Point Position Method
- 3.0 Open Methods
 - 3.1 Newton-Raphson Method
 - 3.2 Secant Method
- 4.0 Summary

2.2 - False-Point Position Method

The following steps are required in estimating the equation root.

1. Assume two x-values (x_p, x_n) such that one of them gives positive y-value $(f(x_p) = y_p)$ and the other gives negative y-value $(f(x_n) = y_n)$.

$$f(x_p) \times f(x_n) < 0$$

2. Calculate the estimated root (x_r) as following:

$$x_r = x_n - \frac{f(x_n) \times (x_p - x_n)}{f(x_p) - f(x_n)}$$

- 3. Calculate the error value, $|f(x_r)|$, which represents the corresponding value of x_r .
- 4. Compare the error value, $|f(x_r)|$, with the desire accuracy (\in).
- 5. If $|f(x_r)| \le \epsilon$ then x_r is the required root (accurate enough). If $|f(x_r)| > \epsilon$ and $f(x_r)$ is positive then $x_p = x_r$ and go to step 2. If $|f(x_r)| > \epsilon$ and $f(x_r)$ is negative then $x_n = x_r$ and go to step 2.

Ex1: Find a root for $f(x) = e^{-x} - x$ with accuracy equal to $\in = 0.001$.

Solution:

Step 1:

Assume

$$x_p = 0$$
 \rightarrow $f(0) = e^{-0} - 0 = 1$

$$x_n = 1$$
 \rightarrow $f(1) = e^{-1} - 1 = -0.632$

Step 2:

$$x_r = x_n - \frac{f(x_n) \times (x_p - x_n)}{f(x_p) - f(x_n)} \rightarrow x_r = 1 - \frac{-0.632 \times (0 - 1)}{1 - (-0.632)} = 0.6127$$

Step 3:

$$f(x_r) = f(0.6127) = e^{-0.6127} - 0.6127 = -0.0708$$

Step 4:

$$|f(x_r)| = |-0.0708| = 0.0708 > \in = 0.001 \rightarrow (not\ enough\ accurat)$$

Step 5:

Since
$$f(x_r) = -0.0708$$
 (negative)

Then
$$x_n = x_r = 0.6127$$
 $\rightarrow f(0.6127) = e^{-0.6127} - 0.6127 = -0.0708$

$$x_p = 0$$
 \rightarrow $f(0) = e^{-0} - 0 = 1$ (from last step)

Start again from step 2

Step#	x_p	$f(x_p)$	x_n	$f(x_n)$	x_r	$f(x_r)$	$ f(x_r) - \in$
1	0	1	1	-0.63212	<mark>0.6127</mark>	<mark>-0.07081</mark>	-0.06981
2	0.5	0.106531	0.6127	-0.07081	0.567699	-0.00087	0.00013

The required root is equal to $x_r = 0.5676$.

Ex2: Find a root for $f(x) = \cos x$ with accuracy equal to $\in = 0.00001$.

Note: All measurements in this example are in radian.

Solution:

Step 1:

Assume

$$x_p = 2$$
 \rightarrow $f(2) = \sin 2 = 0.90929$

$$x_n = 4$$
 \rightarrow $f(4) = \sin 4 = -0.75680$

Step 2:

$$x_r = x_n - \frac{f(x_n) \times (x_p - x_n)}{f(x_p) - f(x_n)}$$
 \rightarrow $x_r = 1 - \frac{-0.75680 \times (2 - 4)}{0.90929 - (-0.75680)}$
= 3.0915

Step 3:

$$f(x_r) = f(3.0915) = \sin 3.0915 = 0.050044$$

Step 4:

$$|f(x_r)| = |0.050044| = 0.050044 > \in = 0.00001 \ \rightarrow (not \ enough \ accurat)$$

Step 5:

Since $f(x_r) = 0.050044$ (positive)

Then
$$x_p = x_r = 3.0915$$
 $\rightarrow f(3.0915) = 0.050044$

$$x_n = 4$$
 \rightarrow $f(4) = \sin 4 = -0.75680$ (from last step)

Start again from step 2

Step#	x_p	$f(x_p)$	x_n	$f(x_n)$	x_r	$f(x_r)$	$ f(x_r) - \in$
1	2	0.909297	4	-0.7568	<mark>3.091528</mark>	<mark>0.050044</mark>	-0.05003
2	<mark>3.091528</mark>	<mark>0.050044</mark>	4	-0.7568	3.147875	-0.00628	-0.00627
3	3.091528	0.050044	3.147875	-0.00628	3.14159	2.3E-06	7.7E-06

The required root is equal to $x_r = 3.1415$.

Ex3: Find a root for $f(x) = x^3 + x^2 - 3x - 3$ with accuracy equal to $\in = 0.0001$.

Solution:

Step 1:

Assume

$$x_p = 2$$
 \rightarrow $f(2) = 2^3 + 2^2 - 3 \times 2 - 3 = 3$

$$x_n = 1$$
 \rightarrow $f(1) = 1^3 + 1^2 - 3 \times 1 - 3 = -4$

Step 2:

$$x_r = x_n - \frac{f(x_n) \times (x_p - x_n)}{f(x_n) - f(x_n)} \rightarrow x_r = 1 - \frac{-4 \times (2 - 1)}{3 - (-4)} = 1.57142$$

Step 3:

$$f(x_r) = f(1.57142) = 1.57142^3 + 1.57142^2 - 3 \times 1.57142 - 3 = -1.36449$$

Step 4:

$$|f(x_r)| = |-1.36449| = 1.36449 > \in = 0.0001 \rightarrow (not\ enough\ accurat)$$

Step 5:

Since
$$f(x_r) = -1.36449$$
 (negative)

Then
$$x_n = x_r = 1.57142$$
 $\rightarrow f(1.57142) = -1.36449$

$$x_p = 2$$
 \rightarrow $f(2) = 2^3 + 2^2 - 3 \times 2 - 3 = 3$

Start again from step 2

Step#	x_p	$f(x_p)$	x_n	$f(x_n)$	x_r	$f(x_r)$	$ f(x_r) - \in$
1	1	-4	2	3	1.571429	<mark>-1.36443</mark>	-1.36433
2	1	-4	<mark>1.571429</mark>	<mark>-1.36443</mark>	1.867257	1.395343	-1.39524
3	1.867257	1.395343	1.571429	-1.36443	1.717686	-0.13468	-0.13458
4	1.867257	1.395343	1.717686	-0.13468	1.730851	-0.01134	-0.01124
5	1.867257	1.395343	1.730851	-0.01134	1.731951	-0.00094	-0.00084
6	1.867257	1.395343	1.731951	-0.00094	1.732043	-7.8E-05	2.19E-05

The required root is equal to $x_r = 1.7320$.

Homework 2

1- Find a root for $f(x) = x^3 - 2x^2$ with accuracy equal to $\in = 0.01$.

Start with: $x_p = 3$ and $x_n = 1$.

2- Find a root for $f(x) = \cos(x+1)$ with accuracy equal to $\in = 0.0001$.

Start with: $x_p = 1$ and $x_n = 0.5$.