
By

Ass. Prof. Dr. Asaad Sabah Hadi

College of Information Technology Software Department

University of Babylon

Artificial Intelligence Application

(Genetic Algorithms)

2016-2017

EVOLUTIONARY ALGORITHM

 The main idea about for Evolutionary Algorithm is : Given a population of
individuals then using the idea of “survival of the fittest” to make natural
selection and this causes arise in the fitness of the population.

 Given the function to be maximized, we can randomly create a set of candidate
solutions, i.e. , elements of the function’s domain , and apply the quality
function and the higher is the better.

 Based on this fitness some of the better candidates are chosen to seen in the
next generation by applying recombination and/or mutation to them.

 Recombination is an operator applied to two or more selected
candidates(parents) and results one or more new candidates(Children).

 Mutation is applied to one candidate and results in one new candidate.

 Executing recombination and mutation leads to a set of new candidates (the
offspring) that compete –based on their fitness with the old ones for a place in
the next generation.

 This process can be iterated until a candidate with a sufficient quality (a
solution) is found or a previously set computational limit is reached.

2

EVOLUTIONARY ALGORITHM

3

 It is easy to see that this algorithm falls in the

category of generate-and-test algorithm.

 The evaluation (fitness) function represent a heuristic

estimation of solution operators.

 Evolutionary Algorithm posses a number of features :

1. EAs are population based, i.e., they process a whole

collection of candidate solutions simultaneously.

2. EAs mostly use recombination to mix information of

more candidate solutions into a new one.

3. EAs are Stochastic.

4

EA FLOWCHART

5

6

PART I: GA THEORY

 What are genetic algorithms?

 How to design a genetic algorithm?

 Genetic algorithms are a family of computational

models ispired by evolution. These algorithms encode a

potential solution to a specific problem on a simple

chromosome-like data structure and apply

recombination operators to these structures in order to

preserve critical information.

 Genetic Algorithm often viewed as function optimizers.

7

INSTEAD OF INTRODUCTION...

 Hill climbing

8

INSTEAD OF INTRODUCTION…(3)

 Genetic algorithm

I am not at the top.

My high is better!

I am at the

top

Height is ...

I will continue

9

 Genetic algorithm - few microseconds after

10

GA CONCEPT

 Genetic algorithm (GA) introduces the principle of

evolution and genetics into search among possible

solutions to given problem.

 The idea is to simulate the process in natural

systems.

 This is done by the creation within a machine

of a population of individuals represented by

chromosomes, in essence a set of character strings,

that are analogous to the DNA,that we have in our

own chromosomes.

 11

SURVIVAL OF THE FITTEST

 The main principle of evolution used in GA

is “survival of the fittest”.

 The good solution survive, while bad ones die.

12

NATURE AND GA...

Nature Genetic algorithm

Chromosome String

Gene Character

Locus String position

Genotype Population

Phenotype Decoded structure

13

THE HISTORY OF GA

 Cellular automata

 John Holland, university of Michigan, 1975.

 Until the early 80s, the concept was studied

theoretically.

 In 80s, the first “real world” GAs were designed.

14

ALGORITHMIC PHASES

 Initialize the population

Select individuals for the mating pool

Perform crossover

Insert offspring into the population

The End

Perform mutation

yes

 no

Stop?

15

16

 DESIGNING GA...

 How to represent genomes?

 How to define the crossover operator?

 How to define the mutation operator?

 How to define fitness function?

 How to generate next generation?

 How to define stopping criteria?

17

REPRESENTING GENOMES...

Representation Example

string 1 0 1 1 1 0 0 1

array of strings http avala yubc net ~apopovic

tree - genetic programming

>

b xor

or

c

b a 18

CROSSOVER

 Crossover is concept from genetics.

 Crossover combines genetic material from two

parents,

in order to produce superior offspring.

 Few types of crossover:

 One-point

 Multiple point.

19

Genotype space =

{0,1}L

Phenotype space

Encoding

(representation)

Decoding

(inverse representation)

011101001

010001001

10010010

10010001

REPRESENTATION

20

SGA REPRODUCTION CYCLE

1. Select parents for the mating pool

 (size of mating pool = population size)

2. Shuffle the mating pool

3. For each consecutive pair apply crossover with

probability pc , otherwise copy parents

4. For each offspring apply mutation (bit-flip with

probability pm independently for each bit)

5. Replace the whole population with the resulting

offspring
21

SGA OPERATORS: 1-POINT CROSSOVER

 Choose a random point on the two parents

 Split parents at this crossover point

 Create children by exchanging tails

 Pc typically in range (0.6, 0.9)

22

SGA OPERATORS: MUTATION

 Alter each gene independently with a probability pm

 pm is called the mutation rate

 Typically between 1/pop_size and 1/ chromosome_length

23

SGA OPERATORS: SELECTION

 Main idea: better individuals get higher chance

 Chances proportional to fitness

 Implementation: roulette wheel technique

 Assign to each individual a part of the
roulette wheel

 Spin the wheel n times to select n
individuals

fitness(A) = 3

fitness(B) = 1

fitness(C) = 2

A C

1/6 = 17%

3/6 = 50%

B

2/6 = 33%

24

AN EXAMPLE

 Simple problem: max x2 over {0,1,…,31}

 GA approach:

 Representation: binary code, e.g. 01101  13

 Population size: 4

 1-point xover, bitwise mutation

 Roulette wheel selection

 Random initialisation

 We show one generational cycle done by hand

25

X2 EXAMPLE: SELECTION

26

X2 EXAMPLE: CROSSOVER

27

X2 EXAMPLE: MUTATION

28

THE SIMPLE GA

 Has been subject of many (early) studies

 still often used as benchmark for novel GAs

 Shows many shortcomings, e.g.

 Representation is too restrictive

 Mutation & crossovers only applicable for bit-string &

integer representations

 Selection mechanism sensitive for converging populations

with close fitness values

 Generational population model (step 5 in SGA repr. cycle)

can be improved with explicit survivor selection

29

ALTERNATIVE CROSSOVER OPERATORS

 Performance with 1 Point Crossover depends on the

order that variables occur in the representation

 more likely to keep together genes that are near each

other

 Can never keep together genes from opposite ends of

string

 This is known as Positional Bias

 Can be exploited if we know about the structure of our

problem, but this is not usually the case

30

N-POINT CROSSOVER

 Choose n random crossover points

 Split along those points

 Glue parts, alternating between parents

 Generalisation of 1 point (still some positional bias)

31

UNIFORM CROSSOVER

 Assign 'heads' to one parent, 'tails' to the other

 Flip a coin for each gene of the first child

 Make an inverse copy of the gene for the second child

 Inheritance is independent of position

32

CROSSOVER OR MUTATION?

 Decade long debate: which one is better / necessary /

main-background

 Answer (at least, rather wide agreement):

 it depends on the problem, but

 in general, it is good to have both

 both have another role

 mutation-only-EA is possible, xover-only-EA would not work

33

CROSSOVER OR MUTATION? (CONT’D)

Exploration: Discovering promising areas in the search

space, i.e. gaining information on the problem

Exploitation: Optimising within a promising area, i.e. using

information

There is co-operation AND competition between them

 Crossover is explorative, it makes a big jump to an area

somewhere “in between” two (parent) areas

 Mutation is exploitative, it creates random small

diversions, thereby staying near (in the area of) the

parent
34

CROSSOVER OR MUTATION? (CONT’D)

 Only crossover can combine information from two

parents

 Only mutation can introduce new information (alleles)

 Crossover does not change the allele frequencies of the

population (thought experiment: 50% 0’s on first bit in

the population, ?% after performing n crossovers)

 To hit the optimum you often need a ‘lucky’ mutation

35

OTHER REPRESENTATIONS

 Gray coding of integers (still binary chromosomes)

 Gray coding is a mapping that means that small changes in

the genotype cause small changes in the phenotype (unlike

binary coding). “Smoother” genotype-phenotype mapping

makes life easier for the GA

Nowadays it is generally accepted that it is better to

encode numerical variables directly as

 Integers

 Floating point variables
36

INTEGER REPRESENTATIONS

 Some problems naturally have integer variables, e.g.

image processing parameters

 Others take categorical values from a fixed set e.g.

{blue, green, yellow, pink}

 N-point / uniform crossover operators work

 Extend bit-flipping mutation to make

 “creep” i.e. more likely to move to similar value

 Random choice (esp. categorical variables)

 For ordinal problems, it is hard to know correct range for

creep, so often use two mutation operators in tandem
37

PERMUTATION REPRESENTATION: TSP EXAMPLE

 Problem:

• Given n cities

• Find a complete tour with

minimal length

 Encoding:

• Label the cities 1, 2, … , n

• One complete tour is one

permutation (e.g. for n =4

[1,2,3,4], [3,4,2,1] are OK)

 Search space is BIG:

 for 30 cities there are 30!  1032

possible tours 38

MUTATION OPERATORS FOR PERMUTATIONS

 Normal mutation operators lead to inadmissible

solutions

 e.g. bit-wise mutation : let gene i have value j

 changing to some other value k would mean that k

occurred twice and j no longer occurred

 Therefore must change at least two values

 Mutation parameter now reflects the probability that

some operator is applied once to the whole string,

rather than individually in each position

39

INSERT MUTATION FOR PERMUTATIONS

 Pick two allele values at random

 Move the second to follow the first, shifting the

rest along to accommodate

 Note that this preserves most of the order and

the adjacency information

40

SWAP MUTATION FOR PERMUTATIONS

 Pick two alleles at random and swap their

positions

 Preserves most of adjacency information (4 links

broken), disrupts order more

41

INVERSION MUTATION FOR PERMUTATIONS

 Pick two alleles at random and then invert the

substring between them.

 Preserves most adjacency information (only

breaks two links) but disruptive of order

information

42

SCRAMBLE MUTATION FOR PERMUTATIONS

 Pick a subset of genes at random

 Randomly rearrange the alleles in those positions

(note subset does not have to be contiguous)

43

CROSSOVER OPERATORS FOR PERMUTATIONS

 “Normal” crossover operators will often lead to

inadmissible solutions

 Many specialised operators have been devised which

focus on combining order or adjacency information

from the two parents

1 2 3 4 5

5 4 3 2 1

1 2 3 2 1

5 4 3 4 5

44

ORDER 1 CROSSOVER

 Idea is to preserve relative order that elements occur

 Informal procedure:

1. Choose an arbitrary part from the first parent

2. Copy this part to the first child

3. Copy the numbers that are not in the first part, to the

first child:

starting right from cut point of the copied part,

using the order of the second parent

and wrapping around at the end

4. Analogous for the second child, with parent roles

reversed
45

ORDER 1 CROSSOVER EXAMPLE

 Copy randomly selected set from first parent

 Copy rest from second parent in order 1,9,3,8,2

46

PARTIALLY MAPPED CROSSOVER (PMX)

Informal procedure for parents P1 and P2:

1. Choose random segment and copy it from P1

2. Starting from the first crossover point look for elements in that

segment of P2 that have not been copied

3. For each of these i look in the offspring to see what element j has

been copied in its place from P1

4. Place i into the position occupied j in P2, since we know that we

will not be putting j there (as is already in offspring)

5. If the place occupied by j in P2 has already been filled in the

offspring k, put i in the position occupied by k in P2

6. Having dealt with the elements from the crossover segment, the

rest of the offspring can be filled from P2.

Second child is created analogously

47

PMX EXAMPLE

Step 1

Step 2

Step 3

48

CYCLE CROSSOVER
Basic idea:

Each allele comes from one parent together with its
position.

Informal procedure:

1. Make a cycle of alleles from P1 in the following way.
(a) Start with the first allele of P1.

(b) Look at the allele at the same position in P2.

(c) Go to the position with the same allele in P1.

(d) Add this allele to the cycle.

(e) Repeat step b through d until you arrive at the first allele of
P1.

2. Put the alleles of the cycle in the first child on the
positions they have in the first parent.

3. Take next cycle from second parent

49

CYCLE CROSSOVER EXAMPLE

 Step 1: identify cycles

 Step 2: copy alternate cycles into offspring

50

MUTATION

 Mutation introduces randomness into the population.

 Mutation is asexual reproduction.

 The idea of mutation is to reintroduce divergence into

a converging population.

 Mutation is performed on small part of population, in

order to avoid entering unstable state.

51

ABOUT PROBABILITIES...

 Average probability for individual to crossoveris, in

most cases, about 80%.

 Average probability for individual to mutate

is about 1-2%.

 Probability of genetic operators

follow the probability in natural systems.

 The better solutions reproduce more often.

52

FITNESS FUNCTION

 Fitness function is evaluation function,

that determines what solutions are better than others.

 Fitness is computed for each individual.

 Fitness function is application depended.

53

SELECTION

 The selection operation copies a single individual,

probabilistically selected based on fitness,

into the next generation of the population.

 There are few possible ways to implement selection:
 “Only the strongest survive”

 Choose the individuals with the highest fitness

for next generation

 “Some weak solutions survive”

 Assign a probability that a particular individual

will be selected for the next generation

 More diversity

 Some bad solutions might have good parts!

54

SELECTION - SURVIVAL OF THE STRONGEST

0.93 0.51 0.72 0.31 0.12 0.64

Previous generation

Next generation

0.93 0.72 0.64

55

SELECTION - SOME WEAK SOLUTIONS SURVIVE

0.93 0.51 0.72 0.31 0.12 0.64

Previous generation

Next generation

0.93 0.72 0.64 0.12

0.12

56

OTHER TYPE OF SELECTION

57

Rank Selection
• Rank selection is an alternative method where the

individuals in the population are ranked according to

fitness, and the expected value of each individual depends

on its rank rather than on its absolute fitness.

• The linear ranking method proposed by Baker is as follows:

Each individual in the population is ranked in increasing

order of fitness, from 1 to N.

• The user chooses the expected value Max of the individual

with rank N, with Max e0. The expected value of each

individual in the population at time t is given by:

58

Tournament Selection

• Tournament selection is similar to rank selection in terms of

selection pressure, but it is computationally more efficient and more

amenable to parallel implementation.

There are two types of tournament selection :

1- Binary Tournament Selection

 In this method, Two individuals are chosen at random from the

population. A random number r is then chosen between 0 and 1. If r < k

(where k is a parameter, for example 0.75), the fitter of the two

individuals is selected to be a parent; otherwise the less fit individual is

selected. The two are then returned to the original population and

can be selected again .

2- Triple Tournament Selection

 The main difference in this method is that we choose three

individuals at random from the population and choose one of them.

STOPPING CRITERIA

 Final problem is to decide

when to stop execution of algorithm.

 There are two possible solutions

to this problem:

 First approach:
 Stop after production

of definite number of generations

 Second approach:
 Stop when the improvement in average fitness

over two generations is below a threshold

59

GA VS. AD-HOC ALGORITHMS

Genetic Algorithm Ad-hoc Algorithms

Speed

Human work

Applicability

Performance

Slow * Generally fast

Minimal Long and exhaustive

General
There are problems

that cannot be solved

analytically

Excellent Depends

* Not necessary!

60

ADVANTAGES OF GAS
 Concept is easy to understand.

 Minimum human involvement.

 Computer is not learned how to use existing solution,

but to find new solution!

 Modular, separate from application

 Supports multi-objective optimization

 Always an answer; answer gets better with time !!!

 Inherently parallel; easily distributed

 Many ways to speed up and improve a GA-based

application as knowledge about problem domain is

gained

 Easy to exploit previous or alternate solutions

61

GA: AN EXAMPLE - DIOPHANTINE EQUATIONS

 Diophantine equation (n=4):

 A*x + b*y + c*z + d*q = s

 For given a, b, c, d, and s - find x, y, z, q

 Genome:

 (X, y, z, p)=

x y z q

62

GA:AN EXAMPLE - DIOPHANTINE EQUATIONS(2)

 Crossover

 Mutation

(1, 2, 3, 4)

(5, 6, 7, 8)

(1, 6, 3, 4)

(5, 2, 7, 8)

(1, 2, 3, 4)

(1, 2, 3, 9)
 63

GA:AN EXAMPLE - DIOPHANTINE EQUATIONS(3)

 First generation is randomly generated of numbers

lower than sum (s).

 Fitness is defined as absolute value of difference

between total and given sum:

 Fitness = abs (total - sum) ,

 Algorithm enters a loop in which operators are

performed on genomes: crossover, mutation, selection.

 After number of generation a solution is reached.
64

PART II: MATHEMATICS

BEHIND GA-S
Two methods for analyzing genetics
algorithms:

Schema analyses

Mathematical modeling

SCHEMA ANALYSES

Weaknesses:

 In determining some characteristics of the population

 Schema analyses makes some approximations that

weaken it

Advantages:

 A simple way to view the standard GA

 They have made possible proofs of some interesting

theorems

 They provide a nice introduction to algorithmic

analyses

66

SCHEMA ANALYSES…
Schema – a template made up of a string of 1s, 0s, and *s,

 where * is used as a wild card that can be either 1 or 0

For example, H = 1 * * 0 * 0 is a schema.

 It has eight instances (one of which is 101010)

 Order, o (H) , the number of non-*, or defined, bits (in example 3)

 Defining length, d (H) , greatest distance between two defined bits

 (in example H has a defining length of 3)

Let S be the set of all strings of length l.

 There is possible schemas on S, but different subsets of S

 Schema cannot be used to represent every possible population within S,

 but forms a representative subset of the set of all subsets of S

l3
l22

67

SCHEMA ANALYSES…

The end-of-iterations conditions:

 expected number of instances of schema H as we

iterate the GA

 M(H, t) – the number of instances of H at time t

 f(x) – fitness of chromosome x

 - average fitness at time t :

 , n=|S|

 - average fitness of instances of H at

time t:

)(tf

n

xf

tf Sx




)(

)(

),(ˆ tHu

),(

)(

),(ˆ
tHm

xf

tHu Hx




68

SCHEMA ANALYSES…

- If we completely ignore the effects of crossover and
mutation,

 we get the expected value:

- Now we consider only the effects of crossover and
mutation,which lower the number of instances of H
in the population.

 Then we will get a good lower bound on E(m(H,t+1))

 - probability that a random crossover bit is
between the defining bits of H

 - probability of crossover occurring

)(

),(),(ˆ

)(

)(

)(

)(

))1,((
tf

tHmtHu

tf

xf

xf

xf

ntHmE Hx

Sx

Hx 











)(HSc

cp

)
1

)(
(1)(




l

Hd
pHS cc

69

SCHEMA ANALYSES…

 - probability of an instance of H remaining

the same after mutation; it is dependent on the

order of H

 - probability of mutation

- With the above notation , we have:

 Schema Theorem, provided by John Holland

)(HSm

mp

)()1()(Ho

mm pHS 

))1)((
1

)(
1(

)(

),(),(ˆ
))1,(()(Ho

mc p
l

Hd
p

tf

tHmtHu
tHmE 




70

SCHEMA ANALYSES…

 The Schema Theorem only shows how schemas
dynamically change, and how short, low-order
schemas whose fitness remain above the average
mean receive

 exponentially growing increases in the number of
samples.

 It cannot make more direct predictions about the
population composition, distribution of fitness and
other statistics more directly related to the GA itself.

71

REFERENCES

 David E. Goldberg, “Genetic Algorithms in

search, Optimization& machine learning, 2006.

 Sivanandam, S.N. and Deepa ,S.N, “ An

introduction to genetic Algorithms”, 2008.

72

