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EVOLUTIONARY ALGORITHM 

 The main idea about for Evolutionary Algorithm is : Given a population of 
individuals then using the idea of “survival of the fittest” to make natural 
selection and this causes arise in the fitness of the population. 

 Given the function to be maximized, we can randomly  create a set of candidate 
solutions, i.e. , elements of the function’s domain , and apply the quality 
function and the higher is the better.  

 Based on this fitness some of the better candidates are chosen to seen in the 
next generation by applying recombination and/or mutation to them. 

 Recombination is an operator applied to two or more selected 
candidates(parents) and results one or more new candidates(Children). 

 Mutation is applied to one candidate and results in one new candidate. 

 Executing recombination and mutation leads to a set of new candidates (the 
offspring) that compete –based on their fitness with the old ones for a place in 
the next generation. 

 This process can be iterated until a candidate with a sufficient quality ( a 
solution) is found or a previously set computational limit is reached. 
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EVOLUTIONARY ALGORITHM  
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 It is easy to see that this algorithm falls in the 

category of generate-and-test algorithm. 

 The evaluation (fitness) function represent a heuristic 

estimation of solution operators.  

 Evolutionary Algorithm posses a number of features : 

1. EAs are population based, i.e., they process a whole 

collection of candidate solutions simultaneously. 

2. EAs mostly use recombination to mix information of 

more candidate solutions into a new one. 

3. EAs are Stochastic. 
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EA FLOWCHART 
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PART I: GA THEORY 

 What are genetic algorithms? 

 How to design a genetic algorithm? 

 Genetic algorithms are a family of computational 

models ispired by evolution. These algorithms encode a 

potential solution to a specific problem on a simple 

chromosome-like data structure and apply 

recombination operators to these structures in order to 

preserve critical information. 

 Genetic Algorithm often viewed as function optimizers. 
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INSTEAD OF INTRODUCTION... 

 Hill climbing 
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INSTEAD OF INTRODUCTION…(3) 

 Genetic algorithm 

I am not at the top. 

My high is better! 

I am at the 

top 

Height is ... 

I will continue 
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 Genetic algorithm - few microseconds after 
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GA CONCEPT 

 Genetic algorithm (GA) introduces the principle of 

evolution and genetics into search among possible 

solutions to given problem. 

 The idea is to simulate the process in natural 

systems.  

 This is done by the creation within a machine  

of a population of individuals represented by 

chromosomes, in essence a set of character strings, 

that are analogous to the DNA,that we have in our 

own chromosomes.  
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SURVIVAL OF THE FITTEST 

 The main principle of evolution used in GA  

is “survival of the fittest”. 

 The good solution survive, while bad ones die. 
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NATURE AND GA... 

Nature Genetic algorithm 

Chromosome String 

Gene Character 

Locus String position 

Genotype Population 

Phenotype Decoded structure 
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THE HISTORY OF GA 

 Cellular automata   

 John Holland, university of Michigan, 1975. 

 Until the early 80s, the concept was studied 

theoretically. 

 In 80s, the first “real world” GAs were designed. 
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ALGORITHMIC PHASES 

     Initialize the population 

Select individuals for the mating pool 

Perform crossover 

Insert offspring into the population 

The End 

Perform mutation 

yes 

  no 

Stop? 
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 DESIGNING GA... 

  How to represent genomes? 

  How to define the crossover operator? 

  How to define the mutation operator? 

  How to define fitness function? 

  How to generate next generation? 

  How to define stopping criteria? 
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REPRESENTING GENOMES... 

Representation Example 

string  1     0     1       1       1        0      0     1 

array of strings http   avala     yubc    net   ~apopovic 

tree - genetic programming 

> 

b xor 

or 

c 

b a 18 



CROSSOVER 

 Crossover is concept from genetics. 

 Crossover combines genetic material from two 

parents, 

in order to produce superior offspring. 

 Few types of crossover: 

 One-point 

 Multiple point. 
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Genotype space = 

{0,1}L 

Phenotype space 

Encoding  

(representation) 

Decoding 

(inverse representation) 

011101001 

010001001 

10010010 

10010001 

REPRESENTATION 
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SGA REPRODUCTION CYCLE 

1. Select parents for the mating pool  

 (size of mating pool = population size) 

2. Shuffle the mating pool 

3. For each consecutive pair apply crossover with 

probability pc , otherwise copy parents 

4. For each offspring apply mutation (bit-flip with 

probability pm independently for each bit) 

5. Replace the whole population with the resulting 

offspring 
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SGA OPERATORS: 1-POINT CROSSOVER 

 Choose a random point on the two parents 

 Split parents at this crossover point 

 Create children by exchanging tails 

 Pc typically in range (0.6, 0.9) 
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SGA OPERATORS: MUTATION 

 Alter each gene independently with a probability pm  

 pm is called the mutation rate 

 Typically between 1/pop_size and 1/ chromosome_length 
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SGA OPERATORS: SELECTION 

 Main idea: better individuals get higher chance 

 Chances proportional to fitness 

 Implementation: roulette wheel technique 

 Assign to each individual a part of the 
roulette wheel 

  Spin the wheel n times to select n 
individuals 

fitness(A) = 3 

fitness(B) = 1 

fitness(C) = 2 

A C 

1/6 = 17% 

3/6 = 50% 

B 

2/6 = 33% 
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AN EXAMPLE 

 Simple problem: max x2 over {0,1,…,31} 

 GA approach: 

 Representation: binary code, e.g. 01101  13 

 Population size: 4 

 1-point xover, bitwise mutation  

 Roulette wheel selection 

 Random initialisation 

 We show one generational cycle done by hand  
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X2 EXAMPLE: SELECTION 
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X2 EXAMPLE: CROSSOVER 
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X2 EXAMPLE: MUTATION 
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THE SIMPLE GA 

 Has been subject of many (early) studies 

 still often used as benchmark for novel GAs 

 Shows many shortcomings, e.g. 

 Representation is too restrictive 

 Mutation & crossovers only applicable for bit-string & 

integer representations 

 Selection mechanism sensitive for converging populations 

with close fitness values 

 Generational population model (step 5 in SGA repr. cycle) 

can be improved with explicit survivor selection 
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ALTERNATIVE CROSSOVER OPERATORS 

 Performance with 1 Point Crossover depends on the 

order that variables occur in the representation 

 more likely to keep together genes that are near each 

other 

 Can never keep together genes from opposite ends of 

string 

 This is known as Positional Bias 

 Can be exploited if we know about the structure of our 

problem, but this is not usually the case 
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N-POINT CROSSOVER 

 Choose n random crossover points 

 Split along those points 

 Glue parts, alternating between parents 

 Generalisation of 1 point (still some positional bias) 
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UNIFORM CROSSOVER 

 Assign 'heads' to one parent, 'tails' to the other 

 Flip a coin for each gene of the first child 

 Make an inverse copy of the gene for the second child 

 Inheritance is independent of position 
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CROSSOVER OR MUTATION? 

 Decade long debate: which one is better / necessary / 

main-background  

 

 Answer (at least, rather wide agreement): 

 it depends on the problem, but 

 in general, it is good to have both 

 both have another role 

 mutation-only-EA is possible, xover-only-EA would not work 
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CROSSOVER OR MUTATION? (CONT’D) 

Exploration: Discovering promising areas in the search 

space, i.e. gaining information on the problem 

Exploitation: Optimising within a promising area, i.e. using 

information 

There is co-operation AND competition between them 

 Crossover is explorative, it makes a big jump to an area 

somewhere “in between” two (parent) areas 

 Mutation is exploitative, it creates random small 

diversions, thereby staying near (in the area of ) the  

parent 
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CROSSOVER OR MUTATION? (CONT’D) 

 Only crossover can combine information from two 

parents 

 Only mutation can introduce new information (alleles) 

 Crossover does not change the allele frequencies of the 

population (thought experiment: 50% 0’s on first bit in 

the population, ?% after performing n crossovers) 

 To hit the optimum you often need a ‘lucky’ mutation 
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OTHER REPRESENTATIONS 

 Gray coding of integers (still binary chromosomes) 

 Gray coding is a mapping that means that small changes in 

the genotype cause small changes in the phenotype (unlike 

binary coding). “Smoother” genotype-phenotype mapping 

makes life easier for the GA 

Nowadays it is generally accepted that it is better to 

encode numerical variables directly as 

 Integers 

 Floating point variables 
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INTEGER REPRESENTATIONS 

 Some problems naturally have integer variables, e.g. 

image processing parameters  

 Others take categorical values from a fixed set e.g. 

{blue, green, yellow, pink} 

 N-point / uniform crossover operators work 

 Extend bit-flipping mutation to make 

 “creep” i.e. more likely to move to similar value 

 Random choice (esp. categorical variables) 

 For ordinal problems, it is hard to know correct range for 

creep, so often  use two mutation operators in tandem  
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PERMUTATION REPRESENTATION: TSP EXAMPLE 

 Problem: 

• Given n cities 

• Find a complete tour with 

minimal length 

 Encoding: 

• Label the cities 1, 2, … , n 

• One complete tour is one 

permutation (e.g. for n =4 

[1,2,3,4], [3,4,2,1] are OK) 

 Search space is BIG:  

 for 30 cities there are 30!  1032 

possible tours 38 



MUTATION OPERATORS FOR PERMUTATIONS 

 Normal mutation operators lead to inadmissible 

solutions 

 e.g. bit-wise mutation : let gene i  have value j 

 changing to some other value k  would mean that k 

occurred twice and j no longer occurred  

 Therefore must change at least two values 

 Mutation parameter now reflects the probability that 

some operator is applied once to the whole string, 

rather than individually in each position 
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INSERT MUTATION FOR PERMUTATIONS 

 Pick two allele values at random 

 Move the second to follow the first,  shifting the 

rest along to accommodate 

 Note that this preserves most of the order and 

the adjacency information 
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SWAP MUTATION FOR PERMUTATIONS 

 Pick two alleles at random and swap their 

positions 

 Preserves most of adjacency information (4 links 

broken), disrupts order more 
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INVERSION MUTATION FOR PERMUTATIONS 

 Pick two alleles at random and then invert the 

substring between them. 

 Preserves most adjacency information (only 

breaks two links) but disruptive of order 

information 
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SCRAMBLE MUTATION FOR PERMUTATIONS 

 Pick a subset of genes at random 

 Randomly rearrange the alleles in those positions 

 

 

 

(note subset does not have to be contiguous) 
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CROSSOVER OPERATORS FOR PERMUTATIONS 

 “Normal” crossover operators will often lead to 

inadmissible solutions 

 

 

 

 

 

 Many specialised operators have been devised which 

focus on  combining order or adjacency information 

from the two parents 

1 2 3 4 5 

5 4 3 2 1 

1 2 3 2 1 

5 4 3 4 5 
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ORDER 1 CROSSOVER 

 Idea is to preserve relative order that elements occur 

 Informal procedure: 

1. Choose an arbitrary part from the first parent 

2. Copy this part to the first child 

3. Copy the numbers that are not in the first part, to the 

first child: 

starting right from cut point of the copied part,  

using the order of the second parent  

and wrapping around at the end 

4. Analogous for the second child, with parent roles 

reversed 
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ORDER 1 CROSSOVER EXAMPLE 

 Copy randomly selected set from first parent 

 Copy rest from second parent in order 1,9,3,8,2 
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PARTIALLY MAPPED CROSSOVER (PMX) 

Informal procedure for parents P1 and P2: 

1. Choose random segment and copy it from P1  

2. Starting from the first crossover point look for elements in that 

segment of P2 that have not been copied 

3. For each of these i look in the offspring to see what element j has 

been copied in its place from P1 

4. Place i into the position occupied j in P2, since we know that we 

will not be putting j there (as is already in offspring) 

5. If the place occupied by j in P2 has already been filled in the 

offspring k, put i in the position occupied by k in P2 

6. Having dealt with the elements from the crossover segment, the 

rest of the offspring can be filled from P2.  

Second child is created analogously 
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PMX  EXAMPLE 

Step 1 

 

 

 

Step 2 

 

 

 

 

Step 3 
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CYCLE CROSSOVER 
Basic idea:  

Each allele comes from one parent together with its 
position. 

Informal procedure: 

1. Make a cycle of alleles from P1 in the following way.  
(a) Start with the first allele of P1.  

(b) Look at the allele at the same position in P2. 

(c) Go to the position with the same allele in P1.  

(d) Add this allele to the cycle. 

(e) Repeat step b through d until you arrive at the first allele of 
P1. 

2. Put the alleles of the cycle in the first child on the 
positions they have in the first parent. 

3. Take next cycle from second parent 
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CYCLE CROSSOVER EXAMPLE 

 Step 1: identify cycles 

 

 

 

 

 Step 2: copy alternate cycles into offspring 
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MUTATION 

 Mutation introduces randomness into the population. 

 Mutation is asexual reproduction. 

 The idea of mutation is to reintroduce divergence into 

a converging population. 

 Mutation is performed on small part of population, in 

order to avoid entering unstable state. 
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ABOUT PROBABILITIES... 

 Average probability for individual to crossoveris, in 

most cases, about 80%. 

 Average probability for individual to mutate  

is about 1-2%. 

 Probability of genetic operators  

follow the  probability in natural systems. 

 The better solutions reproduce more often. 
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FITNESS FUNCTION 

 Fitness function is evaluation function, 

that determines what solutions are better than others. 

 Fitness is computed for each individual. 

 Fitness function is application depended. 
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SELECTION 

 The selection operation copies a single individual, 

probabilistically selected based on fitness,  

into the next generation of the population.  

 There are few possible ways to implement selection: 
 “Only the strongest survive” 

 Choose the individuals with the highest fitness  

for next generation 

 “Some weak solutions survive” 

 Assign a probability that a particular individual  

will be selected for the next generation 

 More diversity 

 Some bad solutions might have good parts! 
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SELECTION - SURVIVAL OF THE STRONGEST 

0.93 0.51 0.72 0.31 0.12 0.64 

Previous generation 

Next generation 

0.93 0.72 0.64 
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SELECTION - SOME WEAK SOLUTIONS SURVIVE 

0.93 0.51 0.72 0.31 0.12 0.64 

Previous generation 

Next generation 

0.93 0.72 0.64 0.12 

0.12 
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OTHER TYPE OF SELECTION 

57 

Rank Selection 
• Rank selection is an alternative method where the 

individuals in the population are ranked according to 

fitness, and the expected value of each individual depends 

on its rank rather than on its absolute fitness. 

• The linear ranking method proposed by Baker is as follows: 

Each individual in the population is ranked in increasing 

order of fitness, from 1 to N.  

• The user chooses the expected value Max of the individual 

with rank N, with Max e0. The expected value of each 

individual in the population at time t is given by:  
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Tournament Selection  
 

• Tournament selection is similar to rank selection in terms of 

selection pressure, but it is computationally more efficient and more 

amenable to parallel implementation. 

There are two types of tournament selection : 

1- Binary Tournament Selection 

     In this method, Two individuals are chosen at random from the 

population. A random number r is then chosen between 0 and 1. If r < k 

(where k is a parameter, for example 0.75), the fitter of the two  

individuals is selected to be a parent; otherwise the less fit individual is 

selected. The two are then returned to the original population and 

can be selected again .  

2- Triple  Tournament Selection  

     The  main difference in this method is that we choose three 

individuals at random from the population and choose one of them. 

 

 

 

 

 

 

 

 

 

 



STOPPING CRITERIA 

 Final problem is to decide  

when to stop execution of algorithm. 

 There are two possible solutions  

to this problem:  

 First approach:  
 Stop after production  

of definite number of generations 

 Second approach:  
 Stop when the improvement in average fitness  

over two generations is below a threshold 
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GA VS. AD-HOC ALGORITHMS 

Genetic Algorithm Ad-hoc Algorithms 

Speed 

Human work 

Applicability 

Performance 

Slow * Generally fast 

Minimal Long and exhaustive 

General 
There are problems  

that cannot be solved 

analytically 

Excellent Depends 

* Not necessary! 
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ADVANTAGES OF GAS 
 Concept is easy to understand. 

 Minimum human involvement. 

 Computer is not learned how to use existing solution, 

but to find new solution! 

 Modular, separate from application 

 Supports multi-objective optimization 

 Always an answer; answer gets better with time !!! 

 Inherently parallel; easily distributed 

 Many ways to speed up and improve a GA-based 

application as knowledge about  problem domain is 

gained 

 Easy to exploit previous or alternate solutions 
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GA: AN EXAMPLE - DIOPHANTINE EQUATIONS 

 Diophantine equation (n=4): 

 

 A*x + b*y + c*z + d*q = s 

 

 For given a, b, c, d, and s - find x, y, z, q 

 

 Genome: 

 

 (X, y, z, p)= 

 

  

x y z q 
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GA:AN EXAMPLE - DIOPHANTINE EQUATIONS(2) 

 Crossover 

 

 

 

 

 

 

 

 Mutation 

( 1, 2, 3, 4 ) 
 

( 5, 6, 7, 8 ) 
 

( 1, 6, 3, 4 ) 
 

( 5, 2, 7, 8 ) 
 

( 1, 2, 3, 4 ) 
 

( 1, 2, 3, 9 ) 
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GA:AN EXAMPLE - DIOPHANTINE EQUATIONS(3) 

 First generation is randomly generated of numbers  

lower than sum (s). 

 Fitness is defined as  absolute value of difference  

between total and given sum: 

  

 Fitness = abs ( total - sum ) , 

 

 Algorithm enters a loop in which operators are 

performed on genomes: crossover, mutation, selection. 

 After number of generation a solution is reached. 
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PART II: MATHEMATICS 

BEHIND GA-S 
Two methods for analyzing genetics 
algorithms: 

Schema analyses 

Mathematical modeling 



SCHEMA ANALYSES 
 

Weaknesses: 

 In determining some characteristics of the population 

 Schema analyses makes some approximations that 

weaken it 

 

Advantages: 

 A simple way to view the standard GA 

 They have made possible proofs of some interesting 

theorems 

 They provide a nice introduction to algorithmic 

analyses 
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SCHEMA ANALYSES… 
Schema – a template made up of a string of 1s, 0s, and *s,  

 where *  is used as a wild card that can be either 1 or 0  

 

For example, H = 1 * * 0 * 0    is a schema. 

 It has eight instances (one of which is 101010) 

 Order, o ( H ) , the number of non-*, or defined, bits (in example 3) 

 Defining length, d ( H ) , greatest distance between two defined bits    

 (in example H has a defining length of 3)   

 

Let S be the set of all strings of length l. 

 There is         possible schemas on S, but          different subsets  of S 

 Schema cannot be used to represent every possible population within S,   

  but forms a representative subset of the set of all subsets of S 

 

l3
l22
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SCHEMA ANALYSES… 

The end-of-iterations conditions: 

 expected number of instances of schema H as we 

iterate the GA 

 M(H, t) – the number of instances of H at time t 

 f(x) – fitness of chromosome x 

         - average fitness at time t : 

 

      , n=|S| 

                  - average fitness of instances of H at 

time t: 
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SCHEMA ANALYSES… 

- If we completely ignore the effects of crossover and 
mutation,  

  we get the expected value: 

 

 

 

- Now we consider only the effects of crossover and 
mutation,which  lower the number of instances of H 
in the population. 

 Then we will get a good lower bound on E(m(H,t+1)) 

            - probability that a random crossover bit is 
between the defining bits of H 

            - probability of crossover occurring 
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SCHEMA ANALYSES… 

          - probability of an instance of H remaining 

the same after  mutation; it is dependent on the 

order of H 

          - probability of mutation 

 

 

 

- With the above notation , we have: 

       Schema Theorem, provided by John Holland  
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SCHEMA ANALYSES… 

   

  The Schema Theorem only shows how schemas 
dynamically change, and how short, low-order 
schemas whose fitness remain above the average 
mean receive  

 exponentially growing increases in the number of 
samples.  

 

  It cannot make more direct predictions about the 
population composition, distribution of fitness and 
other statistics more directly related to the GA itself. 
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