
EXAMPLE 5 Finding Differentials of Functions

(a)

(b)

Estimating with Differentials

Suppose we know the value of a differentiable function ƒ(x) at a point a and want to pre-
dict how much this value will change if we move to a nearby point If dx is small,
then we can see from Figure 3.51 that is approximately equal to the differential dy.
Since

the differential approximation gives

where Thus the approximation can be used to calculate 
when ƒ(a) is known and dx is small.

EXAMPLE 6 Estimating with Differentials

The radius r of a circle increases from to 10.1 m (Figure 3.52). Use dA to esti-
mate the increase in the circle’s area A. Estimate the area of the enlarged circle and com-
pare your estimate to the true area.

Solution Since the estimated increase is

Thus,

The area of a circle of radius 10.1 m is approximately 
The true area is

The error in our estimate is which is the difference 

Error in Differential Approximation

Let ƒ(x) be differentiable at and suppose that is an increment of x. We
have two ways to describe the change in ƒ as x changes from a to 

How well does dƒ approximate ¢ƒ?

 The differential estimate: dƒ = ƒ¿sad ¢x .

The true change:  ¢ƒ = ƒsa + ¢xd - ƒsad

a + ¢x :
dx = ¢xx = a

¢A - dA .0.01p m2,

 = 102.01p m2.

 As10.1d = ps10.1d2

102p m2.

 = ps10d2
+ 2p = 102p .

 As10 + 0.1d L As10d + 2p

dA = A¿sad dr = 2pa dr = 2ps10ds0.1d = 2p m2.

A = pr2 ,

a = 10 m

ƒsa + dxd¢y L dydx = ¢x .

ƒsa + dxd L ƒsad + dy

ƒsa + dxd = ƒsad + ¢y ,

¢y
a + dx .

d a x
x + 1

b =

sx + 1d dx - x dsx + 1d
sx + 1d2 =

x dx + dx - x dx
sx + 1d2 =

dx
sx + 1d2

dstan 2xd = sec2s2xd ds2xd = 2 sec2 2x dx

3.8 Linearization and Differentials 227

�A ≈ dA � 2�a dr

a � 10

dr � 0.1

FIGURE 3.52 When dr is
small compared with a, as it is
when and the
differential gives
a way to estimate the area of the
circle with radius 
(Example 6).

r = a + dr

dA = 2pa dr
a = 10,dr = 0.1
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Linearizing Trigonometric Functions
In Exercises 11–14, find the linearization of Then graph
the linearization and ƒ together.

11.

12.

13.

14.

The Approximation 
15. Show that the linearization of at is

16. Use the linear approximation to find an ap-
proximation for the function ƒ(x) for values of x near zero.

a. b.

c. d.

e. f.

17. Faster than a calculator Use the approximation 
to estimate the following.

a. b.

18. Find the linearization of How
is it related to the individual linearizations of and sin x
at 

Derivatives in Differential Form
In Exercises 19–30, find dy.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

Approximation Error
In Exercises 31–36, each function ƒ(x) changes value when x changes
from Find

a. the change 

b. the value of the estimate and

c. the approximation error ƒ ¢ƒ - dƒ ƒ .

df = ƒ¿sx0d dx ;

¢ƒ = ƒsx0 + dxd - ƒsx0d ;

x0 to x0 + dx .

y = 2 cot a 11x
by = 3 csc s1 - 21xd

y = sec sx2
- 1dy = 4 tan sx3>3d

y = cos sx2dy = sin s51xd

xy2
- 4x3>2

- y = 02y3>2
+ xy - x = 0

y =

21x

3s1 + 1xd
y =

2x

1 + x2

y = x21 - x2y = x3
- 31x

x = 0?
2x + 1

ƒsxd = 2x + 1 + sin x at x = 0.

23 1.009s1.0002d50

1 + kx
s1 + xdk L

ƒsxd =
3B a1 -

1
2 + x

b2

ƒsxd = s4 + 3xd1>3

ƒsxd = 22 + x2ƒsxd =

121 + x

ƒsxd =

2
1 - x

ƒsxd = s1 - xd6

s1 + xdk
L 1 + kx

Lsxd = 1 + kx .
x = 0ƒsxd = s1 + xdk

s1 � xdk
« 1 � kx

ƒsxd = tan x at sad x = 0, sbd x = p>4
ƒsxd = sec x at sad x = 0, sbd x = -p>3
ƒsxd = cos x at sad x = 0, sbd x = -p>2
ƒsxd = sin x at sad x = 0, sbd x = p

ƒ at x = a .

31.

32.

33.

34.

35.

36.

Differential Estimates of Change
In Exercises 37–42, write a differential formula that estimates the
given change in volume or surface area.

37. The change in the volume of a sphere when the ra-
dius changes from to 

38. The change in the volume of a cube when the edge
lengths change from to 

39. The change in the surface area of a cube when the edge
lengths change from to 

40. The change in the lateral surface area of a
right circular cone when the radius changes from to 
and the height does not change

41. The change in the volume of a right circular cylinder
when the radius changes from to and the height does
not change

42. The change in the lateral surface area of a right circular
cylinder when the height changes from to and the ra-
dius does not change

Applications
43. The radius of a circle is increased from 2.00 to 2.02 m.

a. Estimate the resulting change in area.

b. Express the estimate as a percentage of the circle’s original
area.

44. The diameter of a tree was 10 in. During the following year, the
circumference increased 2 in. About how much did the tree’s di-
ameter increase? The tree’s cross-section area?

45. Estimating volume Estimate the volume of material in a cyl-
indrical shell with height 30 in., radius 6 in., and shell thickness
0.5 in.

h0 + dhh0

S = 2prh

r0 + drr0

V = pr2h

r0 + drr0

S = pr2r2
+ h2

x0 + dxx0

S = 6x2

x0 + dxx0

V = x3

r0 + drr0

V = s4>3dpr3

ƒsxd = x3
- 2x + 3, x0 = 2, dx = 0.1

ƒsxd = x-1, x0 = 0.5, dx = 0.1

ƒsxd = x4, x0 = 1, dx = 0.1

ƒsxd = x3
- x, x0 = 1, dx = 0.1

ƒsxd = 2x2
+ 4x - 3, x0 = -1, dx = 0.1

ƒsxd = x2
+ 2x, x0 = 1, dx = 0.1

x

y

0

dx

x0 � dx

df � f '(x0) dx

� f � f (x0 � dx) � f (x0)

Tangent

(x0, f (x0))

y � f (x)

x0
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