Limiting Distribution =

Theorem 2. Let the random variable Y_n have the distribution function $F_n(y)$ and the moment-generating function M(t;n) that exists for -h < t < h for all n. If there exists a distribution function F(y), with corresponding moment-generating function M(t), defined for $|t| \le h_1 < h$, such that $\lim_{n\to\infty} M(t;n) = M(t)$, then Y_n has a limiting distribution with distribution function F(y).

المبرهنة: اذا كان لدينا متغير عشوائي
$$Y_n$$
 بدالة مولدة للعزوم $M(t;n)$ حيث ان $F(y)$ عند دالة توزيعه هي $F_n(y)$ فأذا وجدت دالة توزيع $-h < t < h$ بدالة مولدة للعزوم $M(t)$ حيث ان $M(t)$ حيث ان $M(t)$ عاية بدالة توزيع. $M(t)$ فأن $M(t)$ لها توزيع غاية بدالة توزيع.

فأذا كان بالإمكان الحصول على الصيغة التالية للدالة المولدة للعزوم

$$\lim_{n o \infty} M(t;n) = \lim_{n o \infty} \left[1 + rac{b}{n} + rac{\psi(n)}{n}
ight]^{cn} = \lim_{n o \infty} \left[1 + rac{b}{n}
ight]^{cn} = e^{bc}$$
 حيث ان c , b لا تعتمد على c وان c وان c وان c لا تعتمد على c به منه مد

$$\lim_{n\to\infty} M(t;n) = \lim_{n\to\infty} \left[1 + \frac{b}{n}\right]^{cn} = e^{bc}$$

For example,

$$\lim_{n\to\infty} \left(1 - \frac{t^2}{n} + \frac{t^3}{n^{3/2}}\right)^{-n/2} = \lim_{n\to\infty} \left(1 - \frac{t^2}{n} + \frac{t^3/\sqrt{n}}{n}\right)^{-n/2}.$$

Here $b = -t^2$, $c = -\frac{1}{2}$, and $\psi(n) = t^3/\sqrt{n}$. Accordingly, for every fixed value of t, the limit is $e^{t^2/2}$.

Example 1. Let Y_n have a distribution that is b(n, p). Suppose that the mean $\mu = np$ is the same for every n; that is, $p = \mu/n$, where μ is a constant.

We shall find the limiting distribution of the binomial distribution, when $p = \mu/n$, by finding the limit of M(t; n). Now

$$M(t; n) = E(e^{tY_n}) = [(1 - p) + pe^t]^n = \left[1 + \frac{\mu(e^t - 1)}{n}\right]^n$$

for all real values of t. Hence we have

$$\lim_{n\to\infty} M(t; n) = e^{\mu(e^t-1)}$$

$$\lim_{n\to\infty} M(t;n) = e^{\mu(e^t-1)} = M.G.F. \text{ of } P(\mu)$$

وبالتالي اذا اصبح لمتغير عشوائي توزيع غاية فيمكن استخدام هذا التوزيع كتقريب للتوزيع الأساسي عندما تكون n كبيرة وهذه فائدة ، فمثلا يكون من السهل تكوين جداول لتوزيع بواسون بمعلمة واحدة مثلا المتغير p بتوزيع بواسون بالمعلمتين n=50, p=1/25 فأن

$$Pr(Y \le 1) = (\frac{24}{25})^{50} + 50(\frac{1}{25})(\frac{24}{25})^{49} = 0.400,$$

approximately. Since $\mu = np = 2$, the Poisson approximation to this probability is

$$e^{-2} + 2e^{-2} = 0.406.$$

Example 2. Let Z_n be $\chi^2(n)$. Then the moment-generating function of Z_n is $(1-2t)^{-n/2}$, $t<\frac{1}{2}$. The mean and the variance of Z_n are, respectively, n and 2n. The limiting distribution of the random variable $Y_n=(Z_n-n)/\sqrt{2n}$ will be investigated. Now the moment-generating function of Y_n is

$$\begin{split} M(t;n) &= E \bigg\{ \exp \bigg[t \bigg(\frac{Z_n - n}{\sqrt{2n}} \bigg) \bigg] \bigg\} \\ &= e^{-tn/\sqrt{2n}} E(e^{tZ_n/\sqrt{2n}}) \\ &= \exp \bigg[- \bigg(t \sqrt{\frac{2}{n}} \bigg) \bigg(\frac{n}{2} \bigg) \bigg] \bigg(1 - 2 \frac{t}{\sqrt{2n}} \bigg)^{-n/2}, \qquad t < \frac{\sqrt{2n}}{2}. \end{split}$$

This may be written in the form

$$M(t; n) = \left(e^{t\sqrt{2/n}} - t\sqrt{\frac{2}{n}}e^{t\sqrt{2/n}}\right)^{-n/2}, \qquad t < \sqrt{\frac{n}{2}}.$$

In accordance with Taylor's formula, there exists a number $\xi(n)$, between 0 and $t\sqrt{2/n}$, such that

$$e^{t\sqrt{2/n}} = 1 + t\sqrt{\frac{2}{n}} + \frac{1}{2}\left(t\sqrt{\frac{2}{n}}\right)^2 + \frac{e^{\xi(n)}}{6}\left(t\sqrt{\frac{2}{n}}\right)^3$$

If this sum is substituted for $e^{t\sqrt{2/n}}$ in the last expression for M(t; n), it is seen that

$$M(t; n) = \left(1 - \frac{t^2}{n} + \frac{\psi(n)}{n}\right)^{-n/2},$$

where

$$\psi(n) = \frac{\sqrt{2}t^3e^{\xi(n)}}{3\sqrt{n}} - \frac{\sqrt{2}t^3}{\sqrt{n}} - \frac{2t^4e^{\xi(n)}}{3n}.$$

Since $\xi(n) \to 0$ as $n \to \infty$, then $\lim \psi(n) = 0$ for every fixed value of t. In accordance with the limit proposition cited earlier in this section, we have

$$\lim_{n\to\infty} M(t;n) = e^{t^2/2}$$

for all real values of t. That is, the random variable $Y_n = (Z_n - n)/\sqrt{2n}$ has a limiting normal distribution with mean zero and variance 1.

EXERCISES

- **5.11.** Let X_n have a gamma distribution with parameter $\alpha = n$ and β , where β is not a function of n. Let $Y_n = X_n/n$. Find the limiting distribution of Y_n .
- **5.12.** Let Z_n be $\chi^2(n)$ and let $W_n = Z_n/n^2$. Find the limiting distribution of W_n .
 - **5.13.** Let X be $\chi^2(50)$. Approximate Pr (40 < X < 60).

Theorem 3. Let X_1, X_2, \ldots, X_n denote the items of a random sample from a distribution that has mean μ and positive variance σ^2 . Then the random variable $Y_n = \binom{n}{1} X_i - n\mu / \sqrt{n}\sigma = \sqrt{n}(\overline{X}_n - \mu)/\sigma$ has a limiting distribution that is normal with mean zero and variance 1.

Proof. In the modification of the proof, we assume the existence of the moment-generating function $M(t) = E(e^{tx})$, -h < t < h, of the distribution. However, this proof is essentially the same one that would be given for this theorem in a more advanced course by replacing the moment-generating function by the characteristic function $\varphi(t) = E(e^{tt})$.

The function

$$m(t) = E[e^{t(X-\mu)}] = e^{-\mu t}M(t)$$

also exists for -h < t < h. Since m(t) is the moment-generating function for $X - \mu$, it must follow that m(0) = 1, $m'(0) = E(X - \mu) = 0$, and $m''(0) = E[(X - \mu)^2] = \sigma^2$. By Taylor's formula there exists a number ξ between 0 and t such that

$$m(t) = m(0) + m'(0)t + \frac{m''(\xi)t^2}{2}$$
$$= 1 + \frac{m''(\xi)t^2}{2}.$$

If $\sigma^2 t^2/2$ is added and subtracted, then

$$m(t) = 1 + \frac{\sigma^2 t^2}{2} + \frac{[m''(\xi) - \sigma^2]t^2}{2}.$$

Next consider M(t; n), where

$$M(t; n) = E \left[\exp \left(t \frac{\sum X_t - n\mu}{\sigma \sqrt{n}} \right) \right]$$

$$= E \left[\exp \left(t \frac{X_1 - \mu}{\sigma \sqrt{n}} \right) \exp \left(t \frac{X_2 - \mu}{\sigma \sqrt{n}} \right) \cdots \exp \left(t \frac{X_n - \mu}{\sigma \sqrt{n}} \right) \right]$$

$$= E \left[\exp \left(t \frac{X_1 - \mu}{\sigma \sqrt{n}} \right) \right] \cdots E \left[\exp \left(t \frac{X_n - \mu}{\sigma \sqrt{n}} \right) \right]$$

$$= \left\{ E \left[\exp \left(t \frac{X - \mu}{\sigma \sqrt{n}} \right) \right] \right\}^n$$

$$= \left[m \left(\frac{t}{\sigma \sqrt{n}} \right) \right]^n, \quad -h < \frac{t}{\sigma \sqrt{n}} < h.$$

In m(t), replace t by $t/\sigma \sqrt{n}$ to obtain

$$m\left(\frac{t}{\sigma\sqrt{n}}\right) = 1 + \frac{t^2}{2n} + \frac{[m''(\xi) - \sigma^2]t^2}{2n\sigma^2},$$

where now ξ is between 0 and $t/\sigma\sqrt{n}$ with $-h\sigma\sqrt{n} < t < h\sigma\sqrt{n}$. Accordingly,

$$M(t; n) = \left\{1 + \frac{t^2}{2n} + \frac{[m''(\xi) - \sigma^2]t^2}{2n\sigma^2}\right\}^n$$

Since m''(t) is continuous at t = 0 and since $\xi \to 0$ as $n \to \infty$, we have

$$\lim_{n\to\infty} \left[m''(\xi) - \sigma^2\right] = 0.$$

The limit proposition cited in Section 5.3 shows that

$$\lim_{n\to\infty} M(t;n) = e^{t^2/2}$$

for all real values of t. This proves that the random variable $Y_n = \sqrt{n}(\bar{X}_n - \mu)/\sigma$ has a limiting normal distribution with mean zero and variance 1.

Example 2. Let X_1, X_2, \ldots, X_n denote a random sample from a distribution that is b(1, p). Here $\mu = p$, $\sigma^2 = p(1-p)$, and M(t) exists for all real values of t. If $Y_n = X_1 + \cdots + X_n$, it is known that Y_n is b(n, p). Calculation of probabilities concerning Y_n , when we do not use the Poisson approximation, can be greatly simplified by making use of the fact that $(Y_n - np)/\sqrt{np(1-p)} = \sqrt{n}(\overline{X_n} - p)/\sqrt{p(1-p)} = \sqrt{n}(\overline{X_n} - \mu)/\sigma$ has a limiting distribution that is normal with mean zero and variance 1. Let n = 100 and $p = \frac{1}{2}$, and suppose that we wish to compute Pr (Y = 48, 49, 50, 51, 52). Since Y is a random variable of the discrete type, the events Y = 48, 49, 50, 51, 52 and 47.5 < Y < 52.5 are equivalent. That is, Pr $(Y = 48, 49, 50, 51, 52) = \Pr(47.5 < Y < 52.5)$. Since np = 50 and np(1-p) = 25, the latter probability may be written

$$\Pr (47.5 < Y < 52.5) = \Pr \left(\frac{47.5 - 50}{5} < \frac{Y - 50}{5} < \frac{52.5 - 50}{5} \right)$$
$$= \Pr \left(-0.5 < \frac{Y - 50}{5} < 0.5 \right).$$

- **5.21.** Let \overline{X} denote the mean of a random sample of size 128 from a gamma distribution with $\alpha = 2$ and $\beta = 4$. Approximate Pr $(7 < \overline{X} < 9)$.
 - **5.22.** Let Y be $b(72, \frac{1}{3})$. Approximate Pr (22 $\leq Y \leq 28$).

EXERCISES

- **5.20.** Let \overline{X} denote the mean of a random sample of size 100 from a distribution that is $\chi^2(50)$. Compute an approximate value of Pr (49 < \overline{X} < 51).
 - **5.24.** Let Y denote the sum of the items of a random sample of size 12 from a distribution having p.d.f. $f(x) = \frac{1}{6}$, x = 1, 2, 3, 4, 5, 6, zero elsewhere. Compute an approximate value of Pr (36 $\leq Y \leq 48$). *Hint*. Since the event of interest is $Y = 36, 37, \ldots, 48$, rewrite the probability as Pr (35.5 < Y < 48.5).
 - **5.25.** Let Y be $b(400, \frac{1}{5})$. Compute an approximate value of Pr (0.25 < Y/n).

Since (Y - 50)/5 has an approximate normal distribution with mean zero and variance 1, Table III shows this probability to be approximately 0.382.

The convention of selecting the event 47.5 < Y < 52.5, instead of, say, 47.8 < Y < 52.3, as the event equivalent to the event Y = 48, 49, 50, 51, 52 seems to have originated in the following manner: The probability, Pr(Y = 48, 49, 50, 51, 52), can be interpreted as the sum of five rectangular areas where the rectangles have bases 1 but the heights are, respectively, $Pr(Y = 48), \ldots, Pr(Y = 52)$. If these rectangles are so located that the midpoints of their bases are, respectively, at the points $48, 49, \ldots, 52$ on a horizontal axis, then in approximating the sum of these areas by an area bounded by the horizontal axis, the graph of a normal p.d.f., and two ordinates, it seems reasonable to take the two ordinates at the points 47.5 and 52.5.