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Limiting Distributiong]

Theorem 2. Let the random variable Y , have the distribution function
F,(y) and the moment-gencrating function M(t; n) that exists for
—h <t < h for all n. If there exists a distribution function Fly), with
corresponding moment-generating function M(t), defined for |t| < hy < b,
such that im M(t; n) = M(t), then Y, has a limiting distribution with

distribution function F(y).
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Here b = —#2, ¢ = —4, and ¢(n) = £3/4/n. Accordingly, for every fixed
value of £, the limit is et*/2,

Example 1. Let Y, have a distribution that is b(n, $). Suppose that the
mean g = np is the same for every #; that is, p = u/n, where p is a constant.
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We shall find the limiting distribution of the binomial distribution, when
p = p/n, by finding the limit of M(¢; #). Now

M(t; n) = E(¢"s) = [(1 — p) + pe]* = [1 + “(th— l)r

for all real values of £. Hence we have
lim M(t; n) = g~ D
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Pr(Y < 1) = 39> + 50(3%)(3%)*° = 0.400,

approximately. Since p = np = 2, the Poisson approximation to this prob-
ability is
e ? 4+ 2e7% = 0.406.
Example 2. Let Z_ be y®(n). Then the moment-generating function of Z,
is (1 — 24)=™2, ¢ < L. The mean and the variance of 7, are, respectively, %

and 2#. The limiting distribution of the random variable Y, = (Z, — n)/v/2n
will be investigated. Now the moment-generating function of Y, is

M(t;n) = E{eXP [t(Z" _?;)]}

= e«:m“z—nE(gtanH)
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This may be written in the form
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In accordance with Taylor’s formula, there exists a number £(x), between 0
and #v/2/n, such that
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If this sum is substituted for e!*2™ in the last expression for M(t; »), it is

seen that
2 -n
Mt n) = (1 g M) "
n n

where
V2™ 2B 2t
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Since £(n) — 0 as n — o0, then lim ¢(n) = 0 for every fixed value of ¢ In
accordance with the limit proposition cited earlier in this section, we have

lim M(t; n) = &2

Nn-—+0

for all real values of ¢#. That is, the random variable Y, = (Z, — n)/Vv/2n has
a limiting normal distribution with mean zero and variance 1.

EXERCISES

5.11. Let X, have a gamma distribution with parameter « = # and g,
where £ is not a function of ». Let Y, = X, /n. Find the limiting distribution
of ¥,.

5.12. Let Z, be y*(n) and let W, = Z,/#® Find the limiting distribution
of W,.

5.13. Let X be x*(50). Approximate Pr (40 < X < 60).

Theorem 3. Let X, X,, ..., X, denote the items of a random sample
from a distribution that has mean p and positive variance o*. Then the

random variable Y, = (i X, - ﬂp.)/\,/;o’ = Vu(X, — p)fo has a limit-
1

wng distribution that 1s normal with mean zero and variance 1.

Proof. In the modification of the proof, we assume the existence of
the moment-generating function M(f) = E(e*), —k < ¢ < h, of the
distribution. However, this proof is essentially the same one that would
be given for this theorem in a more advanced course by replacing the
moment-generating function by the characteristic function ¢(f) =

E(e'X).
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The function
m(t) = E[etX-8] = g~ M ()
also exists for —h < ¢ < h. Since m(f) is the moment-generating
function for X — g, it must follow that m(0) = 1, m'(0) = E(X — p)
= 0, and m"(0) = E[(X — p)?] = o By Taylor’s formula there exists
a number ¢ between 0 and £ such that

mt) = m(0) + m'(0)¢ + ﬂf)—’z
= 1 —+ m”g)tz.

If ¢%2/2 is added and subtracted, then
o2 [m"(§) — 0%
2 2 '

Next consider M(t; »), where
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In m(f), replace ¢ by t/oV/n to obtain

2n 2no?

m( ¢ )=1+t2+[’”"(f)_____"_°ﬂf,

agVn

where now ¢ is between 0 and t/oVn with —heVn < t < hoV/n.
Accordingly,

L £ (m(E) - o\
M(t; n) u{l +Zz+_2m72_}.

Since m"(¢) is continuous at £ = 0 and since £ — 0 as # — 00, we have

lim [m"(¢) — o%] = 0.

n— o

The limit proposition cited in Section 5.3 shows that

lim M(t; n) = €12

n— o

for all real values of ¢. This proves that the random variable Y, =

Vn(X, — p)/o has a limiting normal distribution with mean zero and
variance 1.

Example 2. Tet X, X,,..., X, denote a random sample from a
distribution that is #(1, p}. Here p = p, o® = p(1 — p), and M(¢) exists for
all real values of £. If ¥, = X, +-..4 X,, it is known that Y, is b(n, p).
Calculation of probabilities concerning Y,, when we do not use the Poisson
approximation, can be greatly simplified by making use of the fact that
(Y, — np)Vup(l — p) = Va(X, — p)/Vp(1 = p) = Vn(X, — p)johasa
limiting distribution that is normal with mean zero and variance 1. Let
# = 100 and p = 4, and suppose that we wish to compute Pr (Y = 48, 49,
50, 51, 52). Since Y is a random variable of the discrete type, the events Y =
48,49, 50, 51, 52 and 47.5 < Y < 52.5 are equivalent. That is, Pr (¥ = 48,
49, 50, 51,52) = Pr (47.5 < Y < 52.5). Since np = 50 and np(1 — p) = 25,
the latter probability may be written

47.5 50 Y —50 525 — 50
5 5 5 )

Pr (475 < ¥ < 52.5) = Pr(

Y — 50
5

— Pr (—0.5 < < 0.5)-



6 Lecture part 3 / Assist. Prof. Dr. Kareema Abed AL_Kadim

5.21. Let X dencte the mean of a random sample of size 128 from a
gamma distribution with @ = 2 and B = 4. Approximate Pr (7 < X < 9).

5.22. Let Y be 5(72, 1). Approximate Pr (22 < Y < 28).

EXERCISES

5.20. Let X denote the mean of a random sample of size 100 from a
distribution that is y*(50). Compute an approximate value of Pr (49 < X < 51).

5.24. Let Y denote the sum of the items of a random sample of size 12
from a distribution having p.d.f. f(z) = §, 2z = 1, 2, 3, 4, 5, 6, zero elsewhere.
Compute an approximate value of Pr (36 < Y < 48). Hint. Since the event
of interest is Y = 36, 37, ..., 48, rewrite the probability as Pr (355 < ¥ <
48.5).

5.25. Let Y be b(400,1). Compute an approximate wvalue of
Pr(0.25 < Y/n).

Since (Y — 50)/5 has an approximate normal distribution with mean zero
and variance 1, Table III shows this probability to be approximately 0.382.

The convention of selecting the event 47.5 < Y < 52.5, instead of, say,
47.8 < Y < 52.3, as the event equivalent to the event Y = 48, 49, 50, 51, 52
seems to have originated in the following manner: The probability,
Pr (Y = 48, 49, 50, 51, 52), can be interpreted as the sum of five rectangular
areas where the rectangles have bases 1 but the heights are, respectively,
Pr(Y = 48),..., Pr (Y = 52). If these rectangles are so located that the
midpoints of their bases are, respectively, at the points 48, 49,...,52 on a
horizontal axis, then in approximating the sum of these areas by an area
bounded by the horizontal axis, the graph of a normal p.d.f.,, and two
ordinates, it seems reasonable to take the two ordinates at the points 47.5
and 52.5.





