

Assembling, Linking and Executing

1) Assembling:
- Assembling converts source program into object program if syntactically correct and

generates an intermediate .obj file or module.
- It calculates the offset address for every data item in data segment and every

instruction in code segment.
- A header is created which contains the incomplete address in front of the generated obj

module during the assembling.
- Assembler complains about the syntax error if any and does not generate the object

module.
- Assembler creates .obj .lst and .crf files and last two are optional files that can be

created at run time.
- For short programs, assembling can be done manually where the programmer translates

each mnemonic into the machine language using lookup table.
- Assembler reads each assembly instruction of a program as ASCII character and

translates them into respective machine code.

Assembler Types:
There are two types of assemblers:
a) One pass assembler:

- This assembler scans the assembly language program once and converts to object code
at the same time.

Microprocessors lecture 5 : Programming with 8086 Microprocessor

- This assembler has the program of defining forward references only.
- The jump instruction uses an address that appears later in the program during scan, for

that case the programmer defines such addresses after the program is assembled.

b) Two pass assembler
- This type of assembler scans the assembly language twice.
- First pass generates symbol table of names and labels used in the program and

calculates their relative address.
- This table can be seen at the end of the list file and here user need not define anything.
- Second pass uses the table constructed in first pass and completes the object code

creation.
- This assembler is more efficient and easier than earlier.

2) Linking:
- This involves the converting of .OBJ module into .EXE(executable) module i.e.

executable machine code.
- It completes the address left by the assembler.

Microprocessors lecture 5: Programming with 8086 Microprocessor

- It combines separately assembled object files.
- Linking creates .EXE, .LIB, .MAP files among which last two are optional files.

3) Loading and Executing:
- It Loads the program in memory for execution.
- It resolves remaining address.
- This process creates the program segment prefix (PSP) before loading.
- It executes to generate the result.

Sample program assembling object Program linking executable program

Writing .COM programs:
- It fits for memory resident programs.
- Code size limited to 64K.
- .com combines PSP, CS, DS in the same segment
- SP is kept at the end of the segment (FFFF), if 64k is not enough, DOS Places stack at the

end of the memory.
- The advantage of .com program is that they are smaller than .exe program.
- A program written as .com requires ORG 100H immediately following the code

segment’s SEGMENT statement. The statement sets the offset address to the beginning
of execution following the PSP.

.MODEL TINY

.CODE

ORG 100H ; start at end of PSP
BEGIN:JMP MAIN ;Jump Past data

VAL1 DW 5491
VAL2 DW 372

SUM DW ?
MAIN: PROC NEAR

MOV Ax, VALL
ADD AX, VAL2

MOV SUM, AX
MOV AX, 4C00H

INT 21H
MAIN ENDP
END BEGIN

Macro Assembler:
- A macro is an instruction sequence that appears repeatedly in a program assigned with

a specific name.
- The macro assembler replaces a macro name with the appropriate instruction sequence

each time it encounters a macro name.

Microprocessors lecture 5: Programming with 8086 Microprocessor

- When same instruction sequence is to be executed repeatedly, macro assemblers allow

the macro name to be typed instead of all instructions provided the macro is defined.
- Macro are useful for the following purposes:

o To simplify and reduce the amount of repetitive coding.
o To reduce errors caused by repetitive coding.
o To make an assembly language program more readable.
o Macro executes faster because there is no need to call and return.
o Basic format of macro definition:

Macro name MACRO [Parameter list]
……………………….
……………………….
[Instructions]
……………………….
……………………….
ENDM

E.g. Addition MACRO

IN AX, PORT
ADD AX, BX

OUT PORT, AX
ENDM

Passing argument to MACRO:
- To make a macro more flexible, we can define parameters as dummy argument

Addition MACRO VALL1, VAL2

MOV AX, VAL1
ADD AX, VAL2

MOV SUM, AX
ENDM

.MODEL SMALL

.STACK 64

.DATA

VAL1 DW 3241

VAL2 DW 571
SUM DW ?

.CODE

MAIN PROC FAR

MOV AX, @ DATA
MOV DS, AX

; End of macro

; Macro body

; Define macro

Microprocessors lecture 5: Programming with 8086 Microprocessor

Addition VAL1, VAL 2

MOV AX, 4C00H

INT 21H
MAIN ENDP

END MAIN

Addressing modes in 8086:
Addressing modes describe types of operands and the way in which they are accessed for
executing an instruction. An operand address provides source of data for an instruction to
process an instruction to process. An instruction may have from zero to two operands. For two
operands first is destination and second is source operand. The basic modes of addressing are
register, immediate and memory which are described below.

1) Register Addressing:
For this mode, a register may contain source operand, destination operand or both.
E.g. MOV AH, BL

MOV DX, CX

2) Immediate Addressing
In this type of addressing, immediate data is a part of instruction, and appears in the
form of successive byte or bytes. This mode contains a constant value or an expression.
E.g. MOV AH, 35H

MOV BX, 7A25H
3) Direct memory addressing:

In this type of addressing mode, a 16-bit memory address (offset) is directly specified in
the instruction as a part of it. One of the operand is the direct memory and other
operand is the register.
E.g. ADD AX, [5000H]
Note: Here data resides in a memory location in the data segment, whose effective
address may be computed using 5000H as the Offset address and content of DS as
segment address. The effective address, here, is 10H*DS + 5000H.

4) Direct offset addressing

In this addressing, a variation of direct addressing uses arithmetic operators to modify
an address.
E.g. ARR DB 15, 17, 18, 21

MOV AL, ARR [2] ; MOV AL, 18

ADD BH, ARR+3 ; ADD BH, 21

5) Indirect memory addressing:
Indirect addressing takes advantage of computer’s capability for segment: offset
addressing. The registers used for this purpose are base register (BX and BP) and index
register (DI and SI)
E.g. MOV [BX], AL

Microprocessors lecture 5: Programming with 8086 Microprocessor

ADD CX, [SI]

6) Base displacement addressing:
This addressing mode also uses base registers (BX and BP) and index register (SI and DI),
but combined with a displacement (a number or offset value) to form an effective
address.
E.g. MOV BX, OFFSET ARR

 LEA BX, ARR
MOV AL, [BX +2]
ADD TBL [BX], CL

TBL [BX] [BX + TBL] e.g. [BX + 4]

7) Base index addressing:
This addressing mode combines a base registers (BX or BP) with an index register (SI or
DI) to form an effective address.
E.g. MOV AX, [BX +SI]

ADD [BX+DI], CL

8) Base index with displacement addressing
This addressing mode, a variation on base- index combines a base register, an index
register, and a displacement to form an effective address.
E.g. MOV AL, [Bx+SI+2] ADD

TBL [BX +SI], CH

9) String addressing:
This mode uses index registers, where SI is used to point to the first byte or word of the
source string and DI is used to point to the first byte or word of the destination string,
when string instruction is executed. The SI or DI is automatically incremented or
decremented to point to the next byte or word depending on the direction flag (DF).
E.g. MOVS, MOVSB, MOVSW

Examples:

TITLE Program to add ten numbers

.MODEL SMALL

.STACK 64

.DATA
ARR DB 73, 91, 12, 15, 79, 94, 55,
89 SUM DW ?

.CODE
MAIN PROC FAR

MOV AX, @DATA
MOV DS, AX

Microprocessors lecture 6 : Programming with 8086 Microprocessor

MOV CX, 10

MOV AX, 0

LEA BX, ARR
L2: ADD Al, [BX]

JNC L1
INC AH

L1: INC BX
LOOP L2
MOV SUM, AX

MOV AX, 4C00H
INT 21H

MAIN ENDP
END MAIN

