
Infiltration

Infiltration: The movement of water through the soil surface in to the soil. **Infiltration Capacity (fp)** (**mm/hr**) (Potential Infiltration Rate) : The maximum rate at which soil can absorb water through its surface.

Infiltration Rate, f(t):Rate of water entering the soil surface. If there is no limit on the water supply for infiltration, f(t) = fp. Otherwise,

- $0 \le f(t) < fp.$
- fo = initial infiltration rate
- fc = ultimate infiltration rate
- f(t) fc = excess infiltration rate

<u>**Cumulative Infiltration, F(t)**</u>: Depth of infiltration from the beginning of rainfall to any time, t.

 $F(t) = Area under the infiltration curve = \int_{0}^{t} f(t) dt$

Experimental Methods

Double Ring Infiltrometer

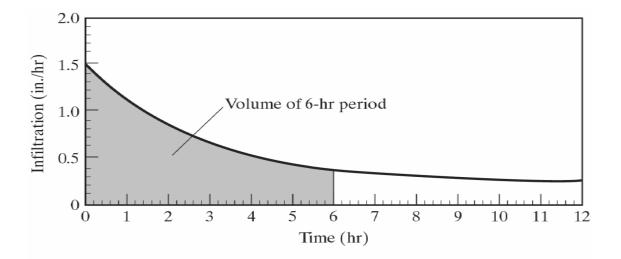
Purpose:

-measure infiltration capacity

Principle:

-fill rings

-measure rate of drop in water level of inner ring over time


College of Engineering

Infiltration capacity curve

Definition

-maximum infiltration rate [cm/hr or in/hr]

-time dependent to some extent

Infiltration process

Infiltration rates depend on both surface and subsurface conditions:

Surface conditions: Availability of water

Subsurface conditions: Ability of water to infiltrate

Rainfall intensity = I

Actual Infiltration rate = f

Infiltration capacity = fp

Infiltration capacity and infiltration rate

Case 1: Rainfall intensity exceeds infiltration capacity

- -Water will pond
- -Actual infiltration rate = infiltration capacity

f = fp

-Surface runoff

University of Babylon

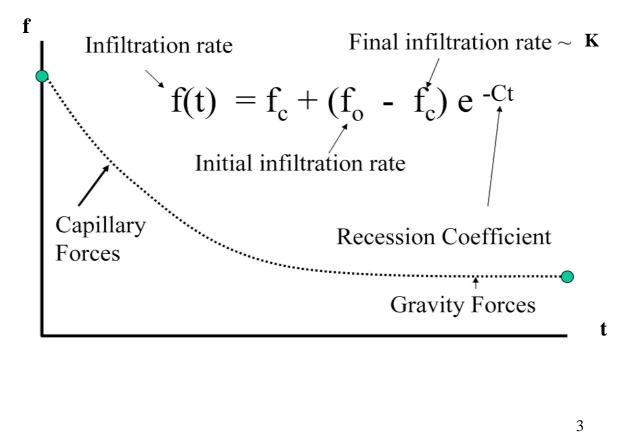
College of Engineering

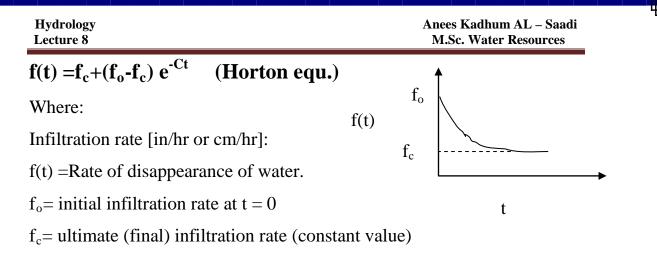
Case 2: Infiltration capacity exceeds rainfall intensity

-All rain infiltrates no ponding

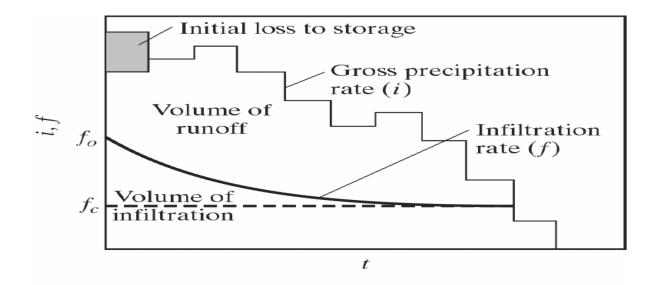
-Actual infiltration rate = rainfall intensity

f = i


-No surface runoff


Factors Affecting Infiltration

- physical properties of the soil
- soil moisture
- rainfall intensity
- land use
- temperature
- water quality

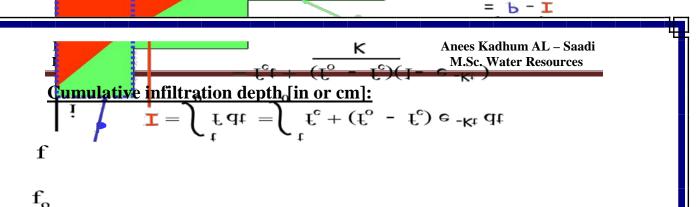

Infiltration Equations

<u>1- Horton's Equation</u>

k = exponential (time) decay constant [hr-1]

Horton's Equation

Advantages:


- Simple
- Can be applied graphically

Disadvantages:

- Parameters hard to estimate
- Only valid for i > f

University of Babylon

College of Engineering

$$F(t) = \int_0^t f dt = \int_0^t f_c + (f_o - f_c) e^{-Kt} dt$$

$$= f_c t + \frac{(f_o - f_c)(1 - e^{-Kt})}{K}$$
(Cumulative infiltration depth) [in or cm]

Example:

A watershed has the following Horton parameters:

fo= 1.5 in/hr fc= 0.2 in/hr

10-0.2 m/m

 $k = 0.35 hr^{-1}$

a) Determine infiltration capacity at t=10 min, 30 min, 6 hrs.

b) Total depth of infiltration during a 6-hr period, assuming rainfall intensity exceeds infiltration capacity.

Solution:

Infiltration capacity:

$$f(t) = 0.2 + 1.3 e^{-0.35 t}$$
 (in / hr)

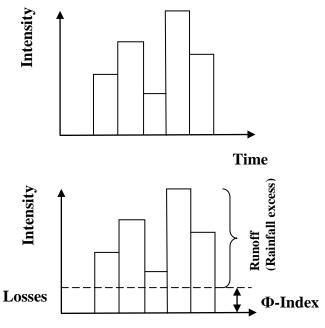
t	f
(hr)	(in /hr)
1/6	1.43
0.5	1.29
6	0.36

University of Babylon

College of Engineering

Example: H.W.

the parameters for Horton's equation are $f_c = 1.0$ cm/hr, $f_o = 5.0$ cm/hr and k=2 hr⁻¹. Determine the infiltration rate and cumulative infiltration after 0, 0.5, 1.0, 1.5, 2.0 hours if the rainfall rate is 6 cm/hr. Plot as a function of time. What would be the infiltration rate if the rainfall rate were 0.6 in/hr?


Infiltration indices

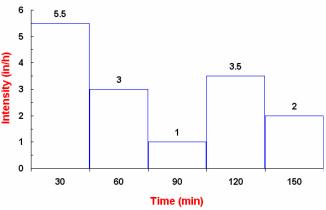
<u>1-The Φ-Index</u>:

 Φ Index is the average rainfall intensity above which the volume of rainfall equals the volume of runoff units of [in/hr] or [cm/hr]

• The area above the dashed line represents measured runoff over the catchment area

• The area below the dashed line is the measured rainfall that did not appear as runoff but represents all the losses including interception, evaporation and infiltration

Time

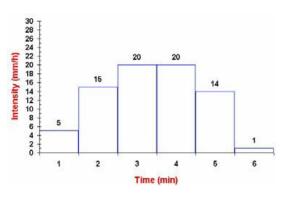

- To determine the Φ Index for a given storm, the amount of bserved runoff is determined and the difference between this quantity and the total gauged rainfall is then calculated
- The volume of loss is then distributed uniformly across the storm pattern
- It should be kept in mind that Φ Index varies as the storm intensity varies with time and thus Φ Index is of limited value and that many

University of Babylon

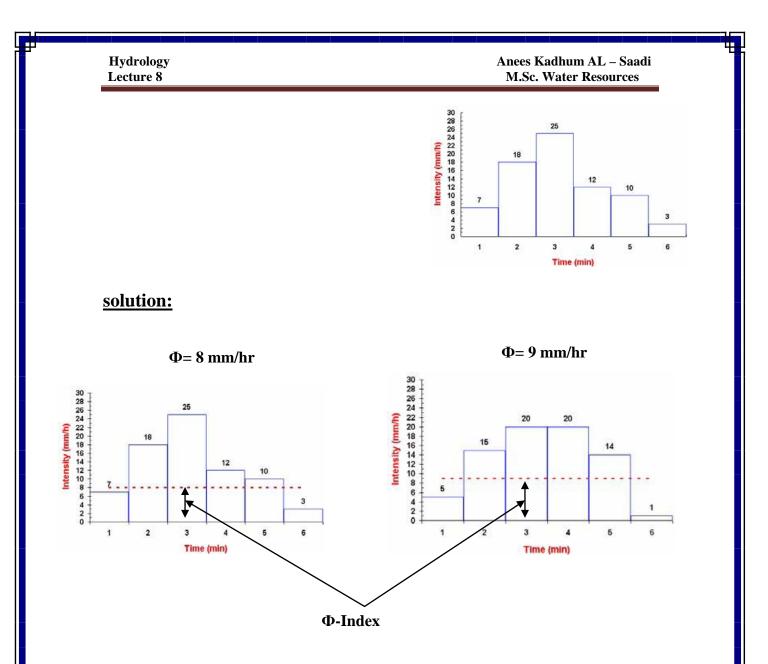
determinations should be made and averaged before the index is used

Example: The rainfall intensities during each 30 min of a 150-min storm over a 500-acre basin are 5.5, 3, 1, 3.5, and 2 in/hr, respectively, The direct runoff from the basin is 105 acre-ft, Determine Φ Index for the basin

Solution:


• Find the total rainfall as follows:

 $30/60 \times (5.5 + 3 + 1 + 3.5 + 2) = 7.5$ in or 0.625 ft


- Rainfall volume = $500 \times 0.625 = 312.5$ acre-ft
- Runoff volume = 105 acre-ft
- Volume under Φ Index = 312.5 105 = 207.5 acre-ft
- Infiltration depth (losses depth) = 207.5/500 = 0.415 ft or 5 in
- Φ Index = 5 × (1/150) × (60) = 1.98 in/hr

Example:

- You have two storm events of 75 mm of a total duration of 6 hours as shown in the figures
- Both produced a total runoff equivalent to 33 mm
- Find out the Φ Index for the two storm events

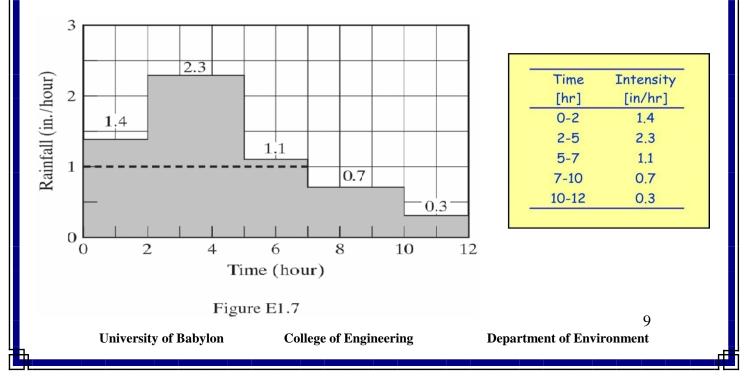
University of Babylon

Example:

- Compute the depth of runoff and the infiltration considering the rainfall event summarized in the table
- Assume a Φ Index value of 0.6

Time (hours)	Rainfall (in)
0	
2	1
4	2
6	4
8	1
	8

solution :


- Compute the intensity for each duration
- If the Φ Index is higher than the rainfall intensity then the infiltration equals the rainfall
- If the Φ Index is less than the rainfall intensity then the infiltration equals the Φ Index
- Net rainfall intensity = the rainfall intensity $-\Phi$ Index

Time (hours)	Rainfall (in)	i (in/hr)	Φ (in/hr)	f (in/hr)	F (in)	ie (in/hr)	Pe (in)
0							
2	1	0.5	0.6	0.5	1.0	0	0
4	2	1.0	0.6	0.6	1.2	0.4	0.8
6	4	2.0	0.6	0.6	1.2	1.4	2.8
8	1	0.5	0.6	0.5	1.0	0	0
	8				4.4		3.6

Example:

Use the rainfall data below to determine the φ -index for a watershed that is 0.875 mi², where the runoff volume is 228.7 ac-ft.

Solution:

Hydrology Lecture 8

Anees Kadhum AL – Saadi M.Sc. Water Resources

Depth of runoff

A = 0.875 sq mi \times 640 acres/sq mi = 560 acres

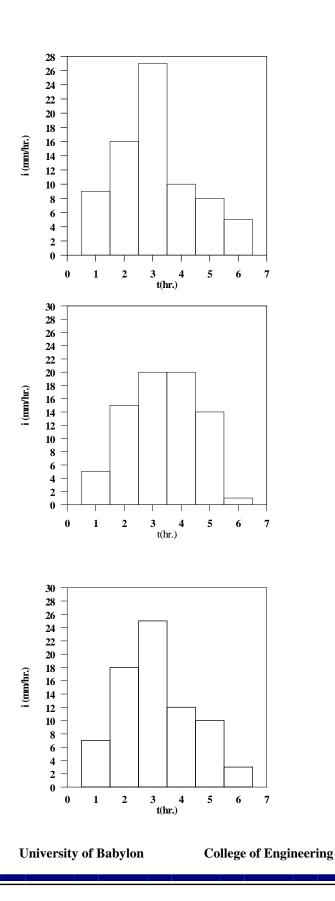
$$Q = \frac{\text{volume}}{\text{area}} = \frac{228.7 \text{ ac} - \text{ft x } 12\frac{\text{in}}{\text{ft}}}{560 \text{ acr}} = 4.9 \text{ inches}$$

Area above φ -index must equal 4.9 inches.

 $\begin{aligned} &2(1.4-\phi)+3\;(2.3-\phi\;)+2(1.1-\phi\;)+3(0.7-\phi\;)+2(0.3-\phi\;)=4.9\\ &\phi=0.8 \end{aligned}$

2. The w-Index:

W=(P-R)/t


P = total precipitation (cm)

R = total runoff (cm)

t = duration of rainfall (hour)

W= defined average rate of infiltration (cm)

Example₁: Find the Index of a certain catchment has the change of the rainfall intensity which given below. If the **runoff=33mm**, **P=75mm**

Hydrology Lecture 8

Example₂: A tabulated below are data for a number of storms happened on a river. Compute the W-index for all storms, what would be the av. Error and av. Percentage error in estimated runoff .If the av. W-index was used to compute the runoff?

Storm	Duration,t	Р	R _{ob.}	W-index	R _{comp.} =P-	Error=R _{comp.} -
no.	(hr.)	(cm)	(cm)	(cm/hr.)	W*t	R _{ob.}
1	12	2.82	1.32	0.125	1.2	-0.12
2	48	2.98	1.02	0.041	0	-1.02
3	24	4.55	2.46	0.087	1.31	-1.15
4	72	14.22	7.42	0.094	4.5	-2.92
5	18	2.87	0.43	0.136	0.44	0.01
6	24	3.91	0.48	0.143	0.67	0.19
7	36	8.1	1.93	0.171	3.24	1.31
8	12	4.41	1.67	0.228	2.79	1.12
9	30	5.31	1.98	0.111	1.26	-0.72
10	18	6.98	3.15	0.213	4.55	1.4
			∑=21.86	∑=1.35	∑=19.96	∑=-1.9
				(W) ave =		Error=-0.19
				1.35/10 = 0.135		L11010.19

For check:

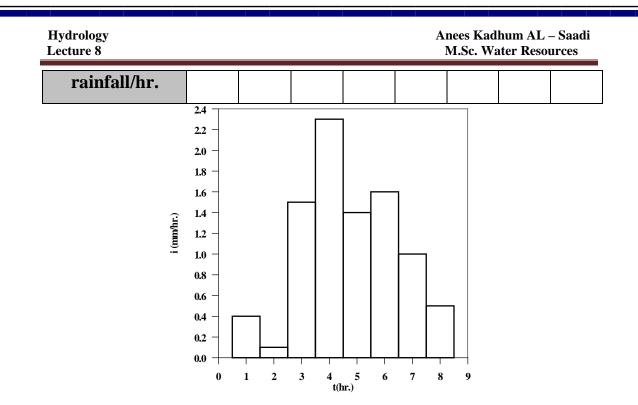
Av. Error=
$$(\sum R_{comp.} - \sum R_{ob.})/10$$

= (19.96-21.86)/10
=-0.19

ok.

Example₃: A rain storm with intensity=**10cm** and direct

runoff=**5.8cm** If the distribution of the storm as given in table below.


Find the

Φ-Index for the storm

t(hr.)	1	2	3	4	5	6	7	8
Excess	0.4	0.1	1.5	2.3	1.4	1.6	1	0.5

University of Babylon

College of Engineering

Example₄: The equation of the f(t) curve for a certain catchment is

given by:

$$f(t) = 1.2 + 4.2 e^{-0.33t}$$

1-Compute the runoff volume for the following rain storm:

2- Compute Φ -Index & W- index and choose the best from them and explain cause that

t(hr.)	1	2	3	4	5	6
Rainfall(mm)	6	8.5	12.8	12.2	6.5	3

t(hr.)	Ic
0	5.4
1	4.2
2	3.4
3	2.8
4	2.3
5	2

University of Babylon

College of Engineering

=49-18.19

=30.81mm

W-index=(P-R)/t

=18.19/6

=3.032 mm/hr.

To Find The Φ -Index:

R=30.81 mm

 $30.81 = (12.8 - 12.2) + (12.2 - 8.5) + 2 + (8.5 - 6.5) + 3 + (6.5 - 6) + 4 + (6 - \Phi)$

30.81=16+6*5-5*Ф

Φ=3.038 mm/hr.

We choose the w-index because it gives larger surface runoff.

Example:

A catchment soil has the following Horton infiltration Parameters:

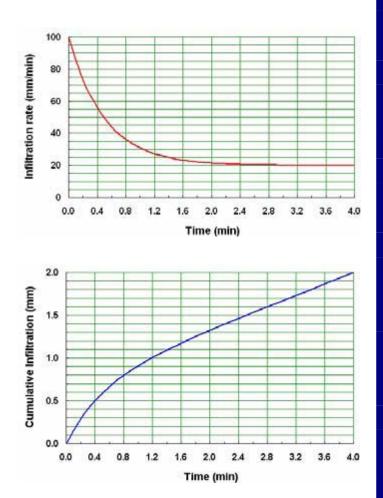
 $f_0 = 100 \text{ mm/min}, f_c = 20 \text{ mm/min}, \text{ and } k = 2 \text{ min}^{-1}$ the required.

1- Plot the infiltration capacity curve with time for this catchment

2- Plot the potential cumulative infiltration for this catchment

University of Babylon

College of Engineering


Anees Kadhum AL – Saadi M.Sc. Water Resources

Hydrology Lecture 8

Solution:

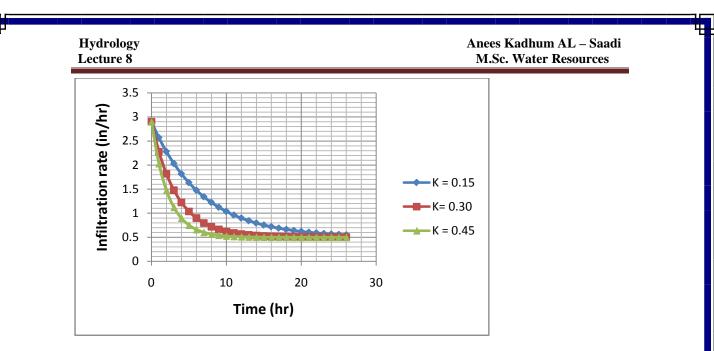
 $f(t) = f_c + (f_o - f_c) e^{-Kt}$ (Horton equ.) F (t) = $f_c t + \frac{(f_o - f_c)(1 - e^{-Kt})}{K}$ (cumulative infiltration rate)

t (min)	f _p (mm/min)	F (mm)
0.0	100.00	0.00
0.2	73.63	0.29
0.4	55.95	0.50
0.6	44.10	0.67
0.8	36.15	0.80
1.0	30.83	0.91
1.2	27.26	1.01
1.4	24.86	1.09
1.6	23.26	1.17
1.8	22.19	1.25
2.0	21.47	1.32
2.2	20.98	1.39
2.4	20.66	1.46
2.6	20.44	1.53
2.8	20.30	1.60
3.0	20.20	1.67
3.2	20.13	1.73
3.4	20.09	1.80
3.6	20.06	1.87
3.8	20.04	1.93
4.0	20.03	2.00
4.2	20.02	2.07

Example:

University of Babylon

College of Engineering


□ Find out the sensitivity of the infiltration capacity curve to different decay coefficients (k) assuming that $f_{\rm 0}=2.9$ in/h and $f_{\rm c}=0.5$ in/h

 \Box Assume k values = 0.15, 0.30, and 0.45 hour⁻¹

Solution:

 $f(t) = f_c + (f_o - f_c) e^{-Kt}$ (Horton equ.)

t (hr)	f _p (in/hr)	f _p (in/hr)	f _p (in/hr)
	K= 0.15	K= 0.30	K= 0.45
0	2.9	2.9	2.9
1	2.6	2.3	2
2	2.3	1.8	1.5
2 3 4	2	1.5	1.1
4	1.8	1.2	0.9
5	1.6	1	0.8
6	1.5	0.9	0.7
7 8	1.3	0.8	0.6
	1.2	0.7	0.6
9	1.1	0.7	0.5
10	1	0.6	0.5
11	1	0.6	0.5
12	0.9	0.6	0.5
13	0.8	0.5	0.5
14	0.8	0.5	0.5
15	0.8	0.5	0.5
16	0.7	0.5	0.5
17	0.7	0.5	0.5
18	0.7	0.5	0.5
19	0.6	0.5	0.5
20	0.6	0.5	0.5
21	0.6	0.5	0.5
22	0.6	0.5	0.5
23	0.6	0.5	0.5
24	0.6	0.5	0.5
25	0.6	0.5	0.5
26	0.5	0.5	0.5

University of Babylon

College of Engineering