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ANGLE MODULATION

1. PHASE AND FREQUENCY MODULATION
For angle modulation, the modulated carrier is represented by

x:.(t) = A cos[w.t + ¢(t)] (1.1)

Where A and « are constants and the phase angle ¢ (t) is a function of the message
signal m(t). Equation (1.1) can be written as

x.(t) =Acos6(t)
where 0(t) = w.t + p(t)
The instantaneous radian frequency of x.(t), denoted by a is

do d
w; = dgt) = w, + Z)t(t) (1.2)

¢ (t) = instantaneous phase deviation.
d ¢(t)
dt

The maximum (or peak) radian frequency deviation of the angle-modulated signal
(Aw) is given by

= instantaneous frequancy deviation.

Aw = |w; — Wclmax (1.3)

In phase modulation (PM) the instantaneous phase deviation of the carrier is
proportional to the message signal; that is,

¢(t) = k,m(t) (1.4)

where k;, is the phase deviation constant, expressed in radians per unit of m(t).
In frequency modulation (FM), the instantaneous frequency deviation of the carrier is
proportional to the message signal; that is,

do(t) _

T kpm(t) (1.5a)
or o) =k [ m(2) dA (1.5b)
thus, we can express the angle-modulated signal as

xpy (t) = A cos [w .t + kpm(t)] (1.6)
t
xpy (t) = A cos [wct + k¢ j m(A) d/ll (1.7)

From Eq.(1.2),we have
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s ) PM 1.8
w; = we +kp — for (1.8)
w; = w, + kpm(t) for FM (1.9)

Thus, in PM, the instantaneous frequency w; varies linearly with the derivative of the
modulating signal, and in FM, w; varies linearly with the modulating signal. Figure
(1.1) illustrates AM, FM, and PM waveforms produced by a sinusoidal message
waveform.
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Fig.(1.1)

2. FOURIER SPECTRA OF ANGLE-MODULATED SIGNALS
An angle-modulated carrier can be represented in exponential form by writing
Eq.(1.1) as

x.(t) = Re(A el (0ct+¢®)) = Re(A e/ @cteit ) (2.1)
Expanding /% ®in a power series yields
. 2 n
xo(t) = Re {Ae/ et [1 + jp(t) =2 — o jr 20 ]
d*(t) ¢° (1)

o0 cosw,t + 3

=A [cos w.t — P(t)sinw.t — sinw,t + ] (2.2)

Thus the angle-modulated signal consists of an unmodulated carrier plus various
amplitude-modulated terms, such as ¢ (t)sin w,t, ¢>(t)cos w,t , ¢3(t)sin w,t ...,
etc. Hence its Fourier spectrum consists of an unmodulated carrier plus spectra of
d(t), p2(t), p3(t),..., etc., centered at .

It is clear that the Fourier spectrum of an angle-modulated signal is not related to the
message signal spectrum in any simple way, as was the case in AM.
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3. NARROWBAND ANGLE MODULATION
If |¢(t)|mex < 1, then Eqg. (2.2) can be approximated by [neglecting all higher-
power terms of ¢ (t)]

x.(t) = Acosw, .t — Ap(t)sinw, t (3.1)
x.(t) in Eq.(3.1) is called the narrowband (NB) angle-modulated signal. Thus,
Xnppm (t) = Acosw .t — Ak, m(t)sinw.t (3.2)
t
Xngrm (t) = Acosw .t — A [kf j m(A) dl] sinw,t (3.3)

Equation (3.1) indicates that a narrowband angle-modulated signal contains an
unmodulated carrier plus a term in which ¢(t) [a function of m(t)] multiplies a /2
(rad) phase-shifted carrier. This multiplication generates a pair of sidebands, and if
¢ (t) has a-bandwidth Wg, the bandwidth of an NB angle-modulated signal is 2W5.

4. SINUSOIDAL (OR TONE), MODULATION
If the message signal m(t) is a pure sinusoid, that is,
_(apsinwy,t for PM
m(t) = {amcoswmt for FM
then Egs. (1.4) and (1.5b) both give

¢(t) = B sinw,, t (4.1)

k,an for PM

B =1k for FM (4.2)
wm
The parameter £ is known as the modulation index for angle modulation and is the
maximum value of phase deviation for both PM and FM. Note that £ is defined only
for sinusoidal modulation and it can be expressed as

Where

Aw
p=— (4.3)
Substituting Eqg. (4.1) into Eq. (1.1), we obtain
x.(t) = A cos[w.t + B sinw, t] (4.4)
which can be expressed as
x,(t) = A Re(e/ @cteiBsin omty (4.5)

The function e/fs @mt js clearly a periodic function with period T,, = 2/ w,,. It
therefore has a Fourier series representation

ejﬁsinwmt= z Cnejnwmt

n=-—oo
The Fourier coefficients ¢, can be found to be

W, T/wm

— ej,Bsin wnpt e—jnwmtdt
21

Cn
/W,

Setting w,,t = x, we have
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1 ™ ...
Cn = _ne’ (Bsinx =) dy = J, (B)
Where J,,(B)is the Bessel function of the first kind of order n and argument S. These
functions are plotted in Fig.(4.1) as a function of n for various values of £.

Note that :
L J(B) = =" (B),
2. Ju-1(B) + Jns1(B) = T-Jn (B)
3. T i () =1

Thus

eifsin omt = Z I (B)eln@nt (4.6)
n=—oo

Substituting Eq.(4.6) into Eq.(4.5), we obtain

el ot i ]n([)’)ej”“”"t]

n=—oo

> an)ef(wwm)t]

x.(t) = ARe

= A Re

Taking the real part yield
X (t) = A z Jn(B)cos(w, + nwy)t 4.7)

n=—oo

T 0.6

J.(B) 0.4
0.2

0.0
—0.2

—0.4

-

—0.6 L
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We observe that;

1. The spectrum consists of a carrier-frequency component plus an infinite number of
sideband components at frequencies & £ nax, (N =1, 2, 3, ...).

2. The relative amplitudes of the spectral lines depend on the value of J,(/), and the
value of J,(f) becomes very small for large values of n.

3. The number of significant spectral lines (that is, having appreciable relative
amplitude) is a function of the modulation index g. With g« 1, only Jy and J; are
significant, so the spectrum will consist of carrier and two sideband lines. But if
S>> 1, there will be many sideband lines. Figure (4.2) shows the amplitude spectra
of angle-modulated signals for several values of g.
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Fig.(4.2)

Example 4.1: For the angle-modulated signal,
x.(t) = 10 cos [2m(10%)t + 10 sin 2m(103)¢]

Find m(t) if;

(a) x.(t) is a PM signal with k,, = 10.
(b) x.(t) is a FM signal with kr = 10,
Sol.

(@) k,m(t) = 10 sin 2m(10°)t

som(t) = sin 2m(103)t

(b) kf [*_m(2) dA = 10 sin 2m(10%)¢

ft /1d/1—10 n 2m(103)t
_oom() =10, 5" m(10°)

m(t) = :—t (l sin 2m(103) t) = 2(10%)cos 2m(103)t
Note that 8(t) = w.t + ¢(t) = 2m(10°)t + 10 sin 2m(103)t
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and ¢(t) = 10 sin 2m(103)¢
now ¢ (t) = 20 (r103) cos 2m(103)t
thus, the maximum phase deviation is

|$(8) |l max = 10 rad
And the maximum frequency deviation is

Aw = |p@®)| =20 (n10°) rad/s = 10 KHz

5. BANDWIDTH OF ANGLE MODULATED SIGNALS

5.1 Sinusoidal Modulation

The bandwidth of angle-modulated signal with sinusoidal modulation depends on
pand oy From mathematic relations;

> RB) =3B + 203 () +J3(B) + ) =

n=—oo

This property will help us to find the power of angle modulated signal as

P = (AJO(B)N’ ) +2[(Ah BN + (ARBNZ) + -]
A? A?
=—Uo(ﬁ)+2(11(ﬁ)+]z(,8)+ N =Fx1="
Now we can deflne the bandwidth of angle modulated signal as the band of
frequencies or harmonics which consists about of 98% of the normalized total
signal power and is given by;
Wg = 2(8 + 1w, (5.1)
When <« 1, the signal is an NB angle-modulated signal and its bandwidth is
approximately equal 2wy,. Usually a value of < 0.2 is taken to be sufficient to
satisfy this condition.
Let us consider B =1, then J,(1) = 0.7652, J;(1) = 0.44, J,(1) = 0.1149,
J3(1) = 0.002477, then the power considered in the terms of n = 0,1, and 2

=@ +2(P W+ ))
= ~[0.76522 + 2(0.44% + 0.1149%)] = 0.495

The sum of P for n=2 is 99% of the total power, which is 0.5. If the
amplitude J,, (8) < 0.1, it can be neglected.

5.2 Arbitrary Modulation:
For an angle-modulated signal with an arbitrary modulating signal m(t) band-

limited to wy rad/s, we define the deviation ratio D as
maximum frequency deviation Aw
bandwidth of m(t) Wy (5-2)
The deviation ratio D plays the same role for arbitrary modulation as the
modulation index g plays for sinusoidal modulation. Replacing g by D and o, by
v in EQ. (5.1), we have
Wg = 2(D+ 1wy = 2(Aw + wy) (5.3)
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This expression for bandwidth is generally referred to as Carson's rule. If D «< 1, the
bandwidth is approximately 2wy ,and the signal is known as a narrowband (NB)
angle-modulated signal. If D > 1, the bandwidth is approximately 2Day = 2Aw,
which is twice the peak frequency deviation. Such a signal is called a wideband (WB)
angle-modulated signal.

Example 5.1:
(a) Estimate Bgy and By for the modulating signal m(t) for k; = 2rx10° and kp =57 .
(b) Repeat the problem if the amplitude of m(t) is doubled.

m(t) |4——-2 % 10~4—

/\\/\\7

Sol.
(a) The peak amplitude of m(t) is unity. Hence, m(t)|,,4, = 1. We now determine the

essential bandwidth B of m(t). The Fourier series for this periodic signal is given by
21

m(t) = z a, cos nw,t Wo = 5=—07F = 10*m

n

Where

=\ m2n?
0 neven
It can be seen that the harmonic amplitudes decrease rapidly with n. The third and
fifth harmonic powers are 1.21 and 0.16%, respectively, of the fundamental
component power. Hence, we are justified in assuming the essential bandwidth of
m(t) as the frequency of the third harmonic, that is, 3(10*/2) Hz. Thus,
fu =15 kHz

-8
a, = { n odd

For FM:
Aw 1

1
— — — 5 —
d Af = 5= = kym(O)lmax =5 (21 x 10%) x 1= 100 kHz
an

Bry = 2(Af + fy) = 230 kHz
The deviation ratio D is given by
Af 100

~fy 15
For PM: the peak amplitude of r(t) is 2x10* and

1
Af = %kpm(t)lmax =50kHz

Hence,
and
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A 50
p=A_30
fu 15
(b) Doubling m(t) doubles its peak value. Hence, m(t)|,,,, =2. But its bandwidth is
unchanged (fy = 15 kHz).

For FM:
1 1
Af = gkfm(mmax = g(Zn X 10°) x 2 =200 kHz

and
The deviation ratio D is given by
Af 200

~fu 15
For PM: Doubling m(t) doubles its derivative so that now 1m(t)|,,,, = 4x10%, and

1
Af = 5=y (®)lmax = 100kHz

Hence,

and
B Af B 100
fu 15

Observe that doubling the signal amplitude roughly doubles the bandwidth of both
FM and PM waveforms.

If m(t) is time-expanded by a factor of 2; that is, if the period of m(t) is 4x10™ then
the signal spectral width (bandwidth) reduces by a factor of 2. We can verify this by
observing that the fundamental frequency is now 2.5 kHz, and its third harmonic is
7.5 kHz. Hence, fy = 7.5 kHz, which is half the previous bandwidth. Moreover, time
expansion does not affect the peak amplitude so that m(t)|,,,, = 1. However,
m(t) e 1S halved, that is, m(t)|,,q, = 10, 000.

For FM:
1
Af = ﬂkfm(t)lmax = 100 kHz
and
Bry = 2(Af + fyy) = 2(100+ 7.5) = 215 kHz
For PM:
1
Af = %kpm(t)lmax = 25 kHz
Hence,
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Note that time expansion of m(t) has very little effect on the FM band width, but it
halves the PM bandwidth. This verifies that the PM spectrum is strongly dependent
on the spectrum of m(t).

6. GENERATION OF ANGLE-MODULUED SIGNALS

6.1 Narrowband Angle-Modulated Signals:

The generation of narrowband angle-modulated signals is easily accomplished in
view of Eq.(3.2) and (3.3). This is illustrated in Fig.(6.1)
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6.2 Wideband Angle-Modulated Signals:
There are two methods of generating wideband (WB) angle-modulated signals; the
indirect method and the direct method.

6.2.1 Indirect Method of Armstrong

In this method, an NB angle-modulated signal is produced first and then converted to
a WB angle-modulated signal by using frequency multipliers. The frequency
multiplier multiplies the argument of the input sinusoid by n. Thus, if the input of a
frequency multiplier is

x(t) = A cos|w.t + ¢p(t)]
Then the output of the frequency multiplier is
y(t) = A cos[nw,.t + ne(t)]
Use of frequency multiplication normally increases the carrier frequency to an
impractically high value. To avoid this, a frequency conversion (using a mixer or
DSB modulator) is necessary to shift the spectrum.
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NBFM signal WBFM signal
f(, fr: = nfr.
Af, Af-=nAf,
, x (1)
L V= Frequency | 1 {QL [ BpF L
multiplier < L |
1 —_ i
X n
(e (,\L) Local

oscillator

6.2.2 Direct Generation
In a voltage-controlled oscillator (VCO), the frequency is controlled by an external
voltage. The oscillation frequency varies linearly with the control voltage. We can
generate an FM wave by using the modulating signal m(t) as a control signal.

@i(t) = ¢ + ke m(t)
One can construct a VCO using variable reactive element (C or L) in resonant circuit
of an oscillator. In Hartley or Colpitt oscillators, the frequency of oscillation is given

by

1
Wy, = —
VLC
If the capacitance C is varied by the modulating signal m(t)
C=C,—km(t)
a)o = = 1/2
\/LC |- —km(t)] IC, |1- —k"g(t)]

km(t) km(t) «1

~ el :

Where (1 4+ x)" = 1+ nx for|x| < 1 Thus,

[1 N km(t)] 1
w, = W, w,. =
Co ©JLC,
kw,
w, = w, + krm(t) ke = °C
0

The main advantage of direct FM is that large frequency deviations are possible and
thus less frequency multiplication is required. The major disadvantage is that the
carrier frequency tends to drift and so additional circuitry is required for frequency
stabilization.

7. DEMODULATION OF ANGLE-MODULATED SIGNALS

Demodulation of an FM signal requires a system that produces an output proportional
to the instantaneous frequency deviation of the input signal. Such a system is called a
frequency discriminator. If the input to an ideal discriminator is an angle-modulated
signal

x.(t) = A cos[w.t + ¢(t)]
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then the output of the discriminator is

d
ya(®) = kg 000

where kg is the discriminator sensitivity. For FM

Va(t) = kqksm(t)
The characteristics of an ideal frequency discriminator are shown below

Output

ll voltage
!

Slope = k,

o
/ ¢ Input frequency

The frequency discriminator also can be used to demodulate PM signals. For PM,
¢(t) is given by

¢(t) = kpm(t)

d m(t)

Then y,; (t)

va(t) = kqk,
Integration of the discriminator output yields a signal which is proportional to m(t). A
demodulator for PM can therefore be implemented as an FM demodulator followed
by an integrator. A simple approximation to the ideal discriminator is an ideal-
differentiator followed by an envelope detector.

e -

| |
x(1)! x.(1) bov(n)
et d ‘ Envelope | -4

: | dt detector [ :

I |

J

the output of the differentiator is

£.(6) = —A [wc + dqgit)] sinfw, + ¢(0)]

The signal X, (t) is both amplitude- and angle-modulated. The envelope of X, (t)is

do(t
o+
The output of the envelop detector is
ya(t) = w;

Which is the instantaneous frequency of the x.(t).
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8. NOISE IN ANGLE MODULATION SYSTEMS
The transmitted signal X, (t) has the form

X.(t) = A, cos[w.t + P(t)] (8.1)

Where
k, X (t) for PM

¢ (1) = (8.2)

t
kff X(A)dA  for FM
Figure (8.1) shows a model for the angle_demodulation system. The predetection
filter bandwidth By = 2(D + 1)B. The detector input is
Y; (1) = X () +n (0)

X (1) = nit) _ ] (1) (1)
BPF — Limiter ' Discriminator ——{ LPF |
5, N ————— S, N,
Fig.(8.1)
Where
n;(t) =n.(t) coso.t—ng(t) sinw.t
= v (1) cos[wt + ¢, (t)]
The carrier amplitude remains constant, therefore
1
Si = EX2(0)] = 5 A2
and
N; =nBr
Hence,
() -2 83
N), " B, (63
Which is independent of X (t). (%)'is often called the carrier-to-noise ratio (CNR).
L
Y;(t) =V(t) cos [w.t + O(t)] (8.4)
Where

V() = {[A.cosd + v, (t)cosp, (t)]? + [A.sind + v, (t)sing, (t)]*}/? (8.5)

and

1 A sing(t) + v, (t)sing,, (t)
A.cosg(t) + v, (t)cosdp, (t)
The limiter suppresses any amplitude variation V(t). Hence, in angle modulation,

SNRs are derived from consideration of 6(t) only. The detector is assumed to be
ideal. The output of the detector is

6(t) = tan

(8.6)

o(t) for PM

Y,(t) = dCHiEt) for FM (8.7)

Let
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Y;(t) = Re[Y (t)e/ “<t]
where
Y(t) = A,e/P® 4 p, el $n(®)

[4.13]

(8.8)

(8.9)

For signal dominance case, v, < A, for almost all t. from Fig.(8.2) the length L of

arc AB is
L=Y®[0(t) — ¢(0)]
ImY
i
A
" Y / \
/ ?
4\
é,(0)
a(r)
lé(r) Re Y
Fig.(8.2)
and

Y(t) = A; + v, (8) cos[, (8) — P ()] =
L = v, (t) sin[¢, (t) — ¢(t)]
Hence, from Eq.(8.10), we obtain
0(t) = ¢(t) + "( ) sin[¢n (t) — ¢(t)]
Replacing ¢,, (t) — ¢(t) with ¢,, (t) will not affect the result. Thus

6(t) =~ ¢(t) + 7;1( ) sin[¢n ()]

s()

0(t) = ¢(t) +
From EQs.(8.7) and (8.2) the detector output IS
Y, (t) = H(t) =k, X(t) + s ()

A
Y()—

s iy (£)
=keX(t) + a

8.1 (S/N), in PM systems

From EQ.(8.15)

for PM

for FM

S, = E[k2X?(0)] = K3E[X? ()] = kASy
1 1
N, =E [ﬁnﬁ(t)] = FE[nE(t)] =1z (2nB)

Hence,

(8.10)

(8.11)
(8.12)

(8.13)

(8.14)

(8.15)

(8.16)

(8.17)
(8.18)
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S ks AZSy
(N)o ~ 2nB (8.19)
Since,
_ S A 8.20
V=18 " 2B (8.20)
Eq.(8.19) can be expressed as
S
(N>o = K2Syy (8.21)
8.2 (S/N), in EM systems
From Eq.(8.16)
Sy = E[kfX?*(t)] = kFE[X*(D)] = kf Sk (8.22)
1 1
Ny = B |- (01| = 5 BT, (O] (8.23)
Az Az
The PSD of n,(t) is given by
2 —
S, (@) = 025, (@) = {01 SorIOI<W(=21B) (g4
0 otherwise
Then
N_11W2d_277W3 8.25
o~ 22m) YT 322 (8:25)
Hence,
S 3A2(2m)k2S
<_) _ 34c(@m)ky Sy (8.26)
N/, 2nW3

Using Eq.(8.20), we can express Eq.(8.26) as
S kiSy\ [ A k7 Sx
(N)O - 3( w2 ><2nB> - 3( w2 )V (8:27)

Since Aw = |kfX(t)|max = ke[IX(t)| < 1], Eq.(8.27) can be rewritten as
Aw\*

S
— _— — = 2
<N)0 3(W) Syy = 3D*Syy (8.28)
Equation (8.25) indicates that the output noise power is inversely proportional to the

2
mean carrier power (AZ—C) in FM. This effect is called noise quieting.
Example 8.1: consider an FM broadcast system with parameter Af=75 kHz and B=15
kHz. Assuming Sy = % find the output SNR and calculate the improvement (in dB)
over the baseband system.
Sol.

Substituting the given parameters into Eq.(8.28), we obtain

<5> _ L (7500%) ? <1> s

v), = >\15010%)) \2)V =2"~Y

Now, 10 log 37.5=15.7 dB, which indicates that (S/N), is about 16 dB better than
the baseband system.
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	Note that time expansion of 𝒎(𝒕) has very little effect on the FM band width, but it halves the PM bandwidth. This verifies that the PM spectrum is strongly dependent on the spectrum of 𝒎(𝒕).

