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Inverse Trigonometric Functions

Inverse trigonometric functions arise when we want to calculate angles from side measure-
ments in triangles. They also provide useful antiderivatives and appear frequently in the
solutions of differential equations. This section shows how these functions are defined,
graphed, and evaluated, how their derivatives are computed, and why they appear as im-
portant antiderivatives.

Defining the Inverses

The six basic trigonometric functions are not one-to-one (their values repeat periodically).
However we can restrict their domains to intervals on which they are one-to-one. The sine
function increases from at to at By restricting its domain to
the interval we make it one-to-one, so that it has an inverse 
(Figure 7.16). Similar domain restrictions can be applied to all six trigonometric functions.

Domain restrictions that make the trigonometric functions one-to-one

Function Domain Range

sin x

cos x

0 � �
2

cos x

x

y[-1, 1][0, p]

x

y

0 �
2

�
2

–

sin x[-1, 1][-p>2, p>2]

sin-1 x[-p>2, p>2]
x = p>2.+1x = -p>2-1

7.7 

Domain:
Range:

x

y

1–1

x � sin y

�
2

�
2

–

y � sin–1x
–1 � x � 1

–�/2 � y � �/2

FIGURE 7.16 The graph of .y = sin-1 x
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518 Chapter 7: Transcendental Functions

tan x

cot x

sec x

csc x

Since these restricted functions are now one-to-one, they have inverses, which we de-
note by

These equations are read “y equals the arcsine of x” or “y equals arcsin x” and so on.

 y = csc-1 x or y = arccsc x

 y = sec-1 x or y = arcsec x

 y = cot-1 x or y = arccot x

 y = tan-1 x or y = arctan x

 y = cos-1 x or y = arccos x

 y = sin-1 x or y = arcsin x

0

1

�
2

– �
2

csc x

x

ys - q , -1] ´ [1, q d[-p>2, 0d ´ s0, p>2]

0

1

��
2

sec x

x

ys - q , -1] ´ [1, q d[0, p>2d ´ sp>2, p]

0 � �
2

cot x

x

ys - q , q ds0, pd

tan x

x

y

0 �
2

�
2

–

s - q , q ds -p>2, p>2d
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7.7 Inverse Trigonometric Functions 519

CAUTION The in the expressions for the inverse means “inverse.” It does not mean
reciprocal. For example, the reciprocal of sin x is 

The graphs of the six inverse trigonometric functions are shown in Figure 7.17. We
can obtain these graphs by reflecting the graphs of the restricted trigonometric functions
through the line as in Section 7.1. We now take a closer look at these functions and
their derivatives.

y = x ,

ssin xd-1
= 1>sin x = csc x .

-1

x

y

x

y

x

y

x

y

x

y

x

y

�
2

�

�

2

�
2

–

1–1

1–1

(a)

(c) (d)

Domain:
Range:

–1 � x � 1
0 � y � �

(b)

Domain:
Range:

–1 � x � 1
� y ��

2
– �

2

Domain:
Range:

x � –1 or x � 1
0 � y � �, y �

Domain:
Range:

–∞ � x � ∞
� y ��

2
– �

2

Domain:
Range: 0 � y � �

Domain:
Range:

x � –1 or x � 1
� y � , y � 0�

2
– �

2

y � sin–1x y � cos–1x

(e) (f)

1–1–2 2

1–1–2 2

�
2

�
2

–

y � tan–1x y � sec–1x

�

�
2

�

�
21–1–2 2

1–1–2 2

�
2

�
2

–

y � csc–1x
y � cot–1x

–∞ � x � ∞

�
2

FIGURE 7.17 Graphs of the six basic inverse trigonometric
functions.

The Arcsine and Arccosine Functions

The arcsine of x is the angle in whose sine is x. The arccosine is an angle in
whose cosine is x.[0, p]

[-p>2, p>2]
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Arc whose sine is x

Arc whose
cosine is x

x2 � y2 � 1

Angle whose
sine is x

Angle whose
cosine is x

x

y

0 x 1

DEFINITION Arcsine and Arccosine Functions

 y � cos�1 x is the number in [0, p]  for which cos y = x .

 y � sin�1 x is the number in [-p>2, p>2]  for which  sin y = x .

x

y

1

–1
0

(a)

�
2

�
2

–

y � sin x, �
2

�
2

– � x �

Domain:
Range:

[–�/2, �/2]
[–1, 1] 

FIGURE 7.18 The graphs of (a) and (b) its inverse,
The graph of obtained by reflection across the line is a

portion of the curve x = sin y .
y = x ,sin-1 x ,y = sin-1 x .

y = sin x, -p>2 … x … p>2,

x

y

0 1–1

(b)

�
2

�
2

–

x � sin y

y � sin–1x
Domain:
Range:

[–1, 1] 
[–�/2, �/2]

x

y

0 � �
2

y � cos x, 0 � x � �

Domain:
Range:

[0, �]
[–1, 1] 1

–1

(a)

FIGURE 7.19 The graphs of (a) and (b) its
inverse, The graph of obtained by reflection across
the line is a portion of the curve x = cos y .y = x ,

cos-1 x ,y = cos-1 x .
y = cos x, 0 … x … p ,

x

y

y � cos–1x
Domain:
Range:

[–1, 1] 
[0, �]

(b)

�

�

2

0–1 1

x � cos y

Known values of sin x and cos x can be inverted to find values of and cos-1 x .sin-1 x

520 Chapter 7: Transcendental Functions

The graph of (Figure 7.18) is symmetric about the origin (it lies along the
graph of ). The arcsine is therefore an odd function:

(1)

The graph of (Figure 7.19) has no such symmetry.y = cos-1 x

sin-1s -xd = -sin-1 x .

x = sin y
y = sin-1 x

The “Arc” in Arc Sine and
Arc Cosine
The accompanying figure gives a
geometric interpretation of 
and for radian angles in the
first quadrant. For a unit circle, the
equation becomes so
central angles and the arcs they subtend
have the same measure. If 
then, in addition to being the angle
whose sine is x, y is also the length of arc
on the unit circle that subtends an angle
whose sine is x. So we call y “the arc
whose sine is x.”

x = sin y ,

s = u ,s = ru

y = cos-1 x
y = sin-1 x
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7.7 Inverse Trigonometric Functions 521

x

1 2

-p>3-23>2
-p>4-22>2
-p>6-1>2
p>6>
p>422>2
p>323>2

sin-1 x

x

1 2

5p>6-23>2
3p>4-22>2
2p>3-1>2
p>3>
p>422>2
p>623>2

cos-1 x

x

y

x

y

�
3

0 1 0

2 �3

�2

�
3

sin �
�3
2

�
4

–
–1

1

–

�
4

–sin � – 1
�2













�
3

sin–1 �
�3
2

�
4

sin–1 1
�2

–

2

�2� sin–1 � –

The angles come from the first and fourth quadrants because the range of is

EXAMPLE 2 Common Values of cos-1 x

[-p>2, p>2].
sin-1 x

0 1 0–1
x

y

x

y

�
4

2�2
�3

�
4

cos �
�2
1

1

�2
�
4

cos–1 � cos–11 �2
2 �

2
�

3
2

�
3
2–





cos–1 1
2

�

�
3
2cos � –1

2






The angles come from the first and second quadrants because the range of is

Identities Involving Arcsine and Arccosine

As we can see from Figure 7.20, the arccosine of x satisfies the identity

(2)

or

(3)

Also, we can see from the triangle in Figure 7.21 that for 

(4)

Equation (4) holds for the other values of x in as well, but we cannot conclude this
from the triangle in Figure 7.21. It is, however, a consequence of Equations (1) and (3)
(Exercise 131).

Inverses of tan x, cot x, sec x, and csc x

The arctangent of x is an angle whose tangent is x. The arccotangent of x is an angle whose
cotangent is x.

[-1, 1]

sin-1 x + cos-1 x = p>2.

x 7 0,

cos-1 s -xd = p - cos-1 x .

cos-1 x + cos-1s -xd = p ,

[0, p] .
cos-1 x

x

y

0–x x–1 1

cos–1x

cos–1(–x)

FIGURE 7.20 and are
supplementary angles (so their sum is ).p

cos-1s -xdcos-1 x

1
x

cos–1x

sin–1x

FIGURE 7.21 and are
complementary angles (so their sum is ).p>2

cos-1 xsin-1 x

EXAMPLE 1 Common Values of sin-1 x
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We use open intervals to avoid values where the tangent and cotangent are undefined.
The graph of is symmetric about the origin because it is a branch of the

graph that is symmetric about the origin (Figure 7.22). Algebraically this means
that

the arctangent is an odd function. The graph of has no such symmetry
(Figure 7.23).

The inverses of the restricted forms of sec x and csc x are chosen to be the functions
graphed in Figures 7.24 and 7.25.

CAUTION There is no general agreement about how to define for negative values
of x. We chose angles in the second quadrant between and This choice makes

It also makes an increasing function on each interval of its
domain. Some tables choose to lie in for and some texts
choose it to lie in (Figure 7.26). These choices simplify the formula for the de-
rivative (our formula needs absolute value signs) but fail to satisfy the computational
equation From this, we can derive the identity

(5)

by applying Equation (4).

sec-1 x = cos-1 a1x b =

p
2

 -  sin-1 a1x b
sec-1 x = cos-1 s1>xd .

[p, 3p>2d
x 6 0[-p, -p>2dsec-1 x

sec-1 xsec-1 x = cos-1 s1>xd .
p .p>2 sec-1 x

y = cot-1 x

tan-1 s -xd = - tan-1 x ;

x = tan y
y = tan-1 x

522 Chapter 7: Transcendental Functions

DEFINITION Arctangent and Arccotangent Functions

 y � cot�1 x is the number in s0, pd for which cot y = x .

 y � tan�1 x is the number in s -p>2, p>2d for which  tan y = x .

y � tan–1x
Domain:
Range:

(–∞, ∞) 
(–�/2, �/2)

x

y

�
2

�
2

–

0

FIGURE 7.22 The graph of y = tan-1 x .

0

y � cot–1x
Domain:
Range:

(–∞, ∞)
(0, �)

�

�

2

x

y

FIGURE 7.23 The graph of y = cot-1 x .

x

y

�x� � 1Domain:
Range: [–�/2, 0) � (0, �/2] 

y � csc–1x

0–1 1

�
2

�
2

–

FIGURE 7.25 The graph of
y = csc-1 x .

3�
2

y � sec–1x

–1 10

�
2

3�
2

�
2

–

–

x

y

�

–�

Domain: �x� � 1
Range: 0 � y � �, y � �

2

B

A

C

FIGURE 7.26 There are several logical
choices for the left-hand branch of

With choice A,
a useful identity

employed by many calculators.
sec-1 x = cos-1 s1>xd ,
y = sec-1 x .

x

y

0 1–1

�

�x� � 1Domain:
Range: [0, �/2) � (�/2, �] 

y � sec–1x

�
2

FIGURE 7.24 The graph of y = sec-1 x .
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x

1

-p>3-23

-p>4-1

-p>6-23>3
p>623>3
p>4
p>323

tan-1 x

x

y

0
x

y

0
1

2

3
�3tan–1 1

�3
�
6

tan–1   –�3   �
3

2
1

�3
–�3

�
6

tan     ��
6

1
�3





tan           � –�3�

3
–

�
3

–

� tan–1 � � –





The angles come from the first and fourth quadrants because the range of is

EXAMPLE 4 Find and if

Solution This equation says that We picture as an angle in a right trian-
gle with opposite side 2 and hypotenuse 3 (Figure 7.27). The length of the remaining side is

Pythagorean theorem

We add this information to the figure and then read the values we want from the completed
triangle:

EXAMPLE 5 Find 

Solution We let (to give the angle a name) and picture in a right trian-
gle with

The length of the triangle’s hypotenuse is2x2
+ 32

= 2x2
+ 9.

tan u = opposite>adjacent = x>3.

uu = tan-1 sx>3d

sec A tan-1 
x
3 B .

cos a =

25
3

, tan a =
225

,  sec a =

325
, csc a =

3
2

, cot a =

25
2

.

2s3d2
- s2d2

= 29 - 4 = 25.

asin a = 2>3.

a = sin-1 
2
3

.

cot acos a, tan a, sec a, csc a ,

s -p>2, p>2d .
tan-1 x

�

3
2

�5

FIGURE 7.27 If then
the values of the other basic trigonometric
functions of can be read from this
triangle (Example 4).

a

a = sin-1 s2/3d ,

� �

3 3

x x
tan � � x

3
sec � � 

�x2 � 9
3�x2 � 9

Thus,

sec u =

hypotenuse

adjacent
 =

2x2
+ 9

3
.

 sec atan-1 
x
3
b = sec u

EXAMPLE 3 Common Values of tan-1 x
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84 Chapter 2: Limits and Continuity

Calculating Limits Using the Limit Laws

In Section 2.1 we used graphs and calculators to guess the values of limits. This section
presents theorems for calculating limits. The first three let us build on the results of Exam-
ple 8 in the preceding section to find limits of polynomials, rational functions, and powers.
The fourth and fifth prepare for calculations later in the text.

The Limit Laws

The next theorem tells how to calculate limits of functions that are arithmetic combina-
tions of functions whose limits we already know.

2.2
HISTORICAL ESSAY*

Limits

THEOREM 1 Limit Laws
If L, M, c and k are real numbers and

1. Sum Rule:

The limit of the sum of two functions is the sum of their limits.

2. Difference Rule:

The limit of the difference of two functions is the difference of their limits.

3. Product Rule:

The limit of a product of two functions is the product of their limits.

lim
x:c

sƒsxd # g sxdd = L # M

lim
x:c

sƒsxd - g sxdd = L - M

lim
x:c

sƒsxd + g sxdd = L + M

lim
x:c

 ƒsxd = L and lim
x:c

 g sxd = M, then

To learn more about the historical figures and the development of the major elements and topics of calcu-
lus, visit www.aw-bc.com/thomas.
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It is easy to convince ourselves that the properties in Theorem 1 are true (although
these intuitive arguments do not constitute proofs). If x is sufficiently close to c, then ƒ(x)
is close to L and g (x) is close to M, from our informal definition of a limit. It is then rea-
sonable that is close to is close to ƒ(x)g (x) is
close to LM; kƒ(x) is close to kL; and that is close to if M is not zero. We
prove the Sum Rule in Section 2.3, based on a precise definition of limit. Rules 2–5 are
proved in Appendix 2. Rule 6 is proved in more advanced texts.

Here are some examples of how Theorem 1 can be used to find limits of polynomial
and rational functions.

EXAMPLE 1 Using the Limit Laws

Use the observations and (Example 8 in Section 2.1) and the
properties of limits to find the following limits.

(a) (b) (c)

Solution

(a) Sum and Difference Rules

Product and Multiple Rules

(b) Quotient Rule

Sum and Difference Rules

Power or Product Rule =

c4
+ c2

- 1
c2

+ 5

 =

lim
x:c

 x4
+ lim

x:c
 x2

- lim
x:c

 1

lim
x:c

 x2
+ lim

x:c
 5

 lim
x:c

 
x4

+ x2
- 1

x2
+ 5

=

lim
x:c

sx4
+ x2

- 1d

lim
x:c

sx2
+ 5d

 = c3
+ 4c2

- 3

 lim
x:c

sx3
+ 4x2

- 3d = lim
x:c

 x3
+ lim

x:c
 4x2

- lim
x:c

 3

lim
x: -2

24x2
- 3lim

x:c
 
x4

+ x2
- 1

x2
+ 5

lim
x:c

sx3
+ 4x2

- 3d

limx:c x = climx:c k = k

L>Mƒ(x)>g(x)
L - M ;L + M; ƒsxd - g sxdƒsxd + g sxd

2.2 Calculating Limits Using the Limit Laws 85

4. Constant Multiple Rule:

The limit of a constant times a function is the constant times the limit of the
function.

5. Quotient Rule:

The limit of a quotient of two functions is the quotient of their limits, provided
the limit of the denominator is not zero.

6. Power Rule: If r and s are integers with no common factor and then

provided that is a real number. (If s is even, we assume that )

The limit of a rational power of a function is that power of the limit of the func-
tion, provided the latter is a real number.

L 7 0.Lr>s
lim
x:c

sƒsxddr>s
= Lr>s

s Z 0,

lim
x:c

  
ƒsxd
g sxd

=
L
M

, M Z 0

lim
x:c

sk # ƒsxdd = k # L
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(c)

Difference Rule

Product and Multiple Rules

Two consequences of Theorem 1 further simplify the task of calculating limits of polyno-
mials and rational functions. To evaluate the limit of a polynomial function as x ap-
proaches c, merely substitute c for x in the formula for the function. To evaluate the limit
of a rational function as x approaches a point c at which the denominator is not zero, sub-
stitute c for x in the formula for the function. (See Examples 1a and 1b.)

 = 213

 = 216 - 3

 = 24s -2d2
- 3

 = 2 lim
x: -2

 4x2
- lim

x: -2
 3

Power Rule with r>s =
1�2 lim

x: -2
24x2

- 3 = 2 lim
x: -2

s4x2
- 3d

86 Chapter 2: Limits and Continuity

THEOREM 2 Limits of Polynomials Can Be Found by Substitution
If then

lim
x:c

 Psxd = Pscd = an cn
+ an - 1 cn - 1

+
Á

+ a0 .

Psxd = an xn
+ an - 1 xn - 1

+
Á

+ a0 ,

THEOREM 3 Limits of Rational Functions Can Be Found by Substitution
If the Limit of the Denominator Is Not Zero

If P(x) and Q(x) are polynomials and then

lim
x:c

  
Psxd
Qsxd

=

Pscd
Qscd

.

Qscd Z 0,

EXAMPLE 2 Limit of a Rational Function

This result is similar to the second limit in Example 1 with now done in one step.

Eliminating Zero Denominators Algebraically

Theorem 3 applies only if the denominator of the rational function is not zero at the limit
point c. If the denominator is zero, canceling common factors in the numerator and de-
nominator may reduce the fraction to one whose denominator is no longer zero at c. If this
happens, we can find the limit by substitution in the simplified fraction.

EXAMPLE 3 Canceling a Common Factor

Evaluate

lim
x:1

 
x2

+ x - 2
x2

- x
.

c = -1,

lim
x: -1

 
x3

+ 4x2
- 3

x2
+ 5

=

s -1d3
+ 4s -1d2

- 3

s -1d2
+ 5

=

0
6

= 0

Identifying Common Factors
It can be shown that if Q(x) is a
polynomial and then

is a factor of Q(x). Thus, if
the numerator and denominator of a
rational function of x are both zero at

they have as a common
factor.

sx - cdx = c ,

sx - cd
Qscd = 0,
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Solution We cannot substitute because it makes the denominator zero. We test the
numerator to see if it, too, is zero at It is, so it has a factor of in common
with the denominator. Canceling the gives a simpler fraction with the same val-
ues as the original for 

Using the simpler fraction, we find the limit of these values as by substitution:

See Figure 2.8.

EXAMPLE 4 Creating and Canceling a Common Factor

Evaluate

Solution This is the limit we considered in Example 10 of the preceding section. We
cannot substitute and the numerator and denominator have no obvious common
factors. We can create a common factor by multiplying both numerator and denominator
by the expression (obtained by changing the sign after the square root).
The preliminary algebra rationalizes the numerator:

Common factor x2

Cancel x2 for x � 0

Therefore,

This calculation provides the correct answer to the ambiguous computer results in Exam-
ple 10 of the preceding section.

The Sandwich Theorem

The following theorem will enable us to calculate a variety of limits in subsequent chap-
ters. It is called the Sandwich Theorem because it refers to a function ƒ whose values are

 =
1
20

= 0.05.

 =
1202

+ 100 + 10

 lim
x:0

 
2x2

+ 100 - 10
x2 = lim

x:0
 

12x2
+ 100 + 10

 =
12x2

+ 100 + 10
.

 =

x2

x2 A2x2
+ 100 + 10 B

 =

x2
+ 100 - 100

x2 A2x2
+ 100 + 10 B

 
2x2

+ 100 - 10
x2 =

2x2
+ 100 - 10

x2
#
2x2

+ 100 + 102x2
+ 100 + 10

2x2
+ 100 + 10

x = 0,

lim
x:0

 
2x2

+ 100 - 10
x2 .

lim
x:1

 
x2

+ x - 2
x2

- x
= lim

x:1
 
x + 2

x =
1 + 2

1
= 3.

x : 1

x2
+ x - 2

x2
- x

=

sx - 1dsx + 2d
xsx - 1d

=

x + 2
x , if x Z 1.

x Z 1:
sx - 1d’s

sx - 1dx = 1.
x = 1

2.2 Calculating Limits Using the Limit Laws 87

x

y

1–2 0

(1, 3)

(b)

3

x

y

10–2

(1, 3)

(a)

3

y � x2 � x � 2
x2 � x

y � x � 2
x

FIGURE 2.8 The graph of
in

part (a) is the same as the graph of
in part (b) except

at where ƒ is undefined. The
functions have the same limit as 
(Example 3).

x : 1
x = 1,

g sxd = sx + 2d>x
ƒsxd = sx2

+ x - 2d>sx2
- xd

Denominator
not 0 at x � 0;
substitute
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2.2 Calculating Limits Using the Limit Laws 89

EXERCISES 2.2

Limit Calculations
Find the limits in Exercises 1–18.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18. lim
h:0

 
25h + 4 - 2

h
lim
h:0

 
23h + 1 - 1

h

lim
h:0

 
525h + 4 + 2

lim
h:0

 
323h + 1 + 1

lim
z:0 

s2z - 8d1>3lim
y: -3

s5 - yd4>3
lim

x: -4
sx + 3d1984lim

x: -1
 3s2x - 1d2

lim
y:2

  
y + 2

y2
+ 5y + 6

lim
y: -5

  
y2

5 - y

lim
x:5

  
4

x - 7
lim
x:2

  
x + 3
x + 6

lim
s:2>3 3ss2s - 1dlim

t:6
 8st - 5dst - 7d

lim
x: -2

sx3
- 2x2

+ 4x + 8dlim
x:2

s -x2
+ 5x - 2d

lim
x:12

s10 - 3xdlim
x: -7

s2x + 5d

Find the limits in Exercises 19–36.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34. lim
x: -2

 
x + 22x2

+ 5 - 3
lim
x:2

 
2x2

+ 12 - 4
x - 2

lim
x: -1

 
2x2

+ 8 - 3
x + 1

lim
x:1

 
x - 12x + 3 - 2

lim
x:4

  
4x - x2

2 - 2x
lim
x:9

 
2x - 3
x - 9

lim
y:2

  
y3

- 8
y4

- 16
lim
u:1

  
u4

- 1
u3

- 1

lim
y:0

  
5y3

+ 8y2

3y4
- 16y2lim

x: -2
  

-2x - 4
x3

+ 2x2

lim
t: -1

  
t2

+ 3t + 2
t2

- t - 2
lim
t:1

 
t2

+ t - 2
t2

- 1

lim
x:2

  
x2

- 7x + 10
x - 2

lim
x: -5

 
x2

+ 3x - 10
x + 5

lim
x: -3

  
x + 3

x2
+ 4x + 3

lim
x:5

  
x - 5

x2
- 25
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OVERVIEW  In Chapter 2, we defined the slope of a curve at a point as the limit of secant
slopes. This limit, called a derivative, measures the rate at which a function changes, and it
is one of the most important ideas in calculus. Derivatives are used to calculate velocity
and acceleration, to estimate the rate of spread of a disease, to set levels of production so
as to maximize efficiency, to find the best dimensions of a cylindrical can, to find the age
of a prehistoric artifact, and for many other applications. In this chapter, we develop tech-
niques to calculate derivatives easily and learn how to use derivatives to approximate com-
plicated functions.

147

DIFFERENTIATION

C h a p t e r

3 

The Derivative as a Function

At the end of Chapter 2, we defined the slope of a curve at the point where
to be

We called this limit, when it existed, the derivative of ƒ at We now investigate the
derivative as a function derived from ƒ by considering the limit at each point of the do-
main of ƒ.

x0 .

lim
h:0

 
ƒsx0 + hd - ƒsx0d

h
.

x = x0

y = ƒsxd

3.1

HISTORICAL ESSAY

The Derivative

DEFINITION Derivative Function
The derivative of the function ƒ(x) with respect to the variable x is the function

whose value at x is

provided the limit exists.

ƒ¿sxd = lim
h:0

 
ƒsx + hd - ƒsxd

h
,

ƒ¿
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We use the notation ƒ(x) rather than simply ƒ in the definition to emphasize the inde-
pendent variable x, which we are differentiating with respect to. The domain of is the set
of points in the domain of ƒ for which the limit exists, and the domain may be the same or
smaller than the domain of ƒ. If exists at a particular x, we say that ƒ is differentiable
(has a derivative) at x. If exists at every point in the domain of ƒ, we call ƒ differen-
tiable.

If we write then and h approaches 0 if and only if z approaches
x. Therefore, an equivalent definition of the derivative is as follows (see Figure 3.1).

h = z - xz = x + h ,

ƒ¿

ƒ¿

ƒ¿

148 Chapter 3: Differentiation

Alternative Formula for the Derivative

ƒ¿sxd = lim
z:x

 
ƒszd - ƒsxd

z - x .

Calculating Derivatives from the Definition

The process of calculating a derivative is called differentiation. To emphasize the idea
that differentiation is an operation performed on a function we use the notation

as another way to denote the derivative Examples 2 and 3 of Section 2.7 illustrate
the differentiation process for the functions and Example 2 shows
that

For instance,

In Example 3, we see that

Here are two more examples.

EXAMPLE 1 Applying the Definition

Differentiate 

Solution Here we have ƒsxd =

x
x - 1

ƒsxd =

x
x - 1

 .

d
dx
a1x b = -

1
x2 .

d
dx

 a3
2

 x - 4b =

3
2

.

d
dx

 smx + bd = m .

y = 1>x .y = mx + b
ƒ¿sxd .

d
dx

 ƒsxd

y = ƒsxd ,

x z

h � z � x

P(x, f (x))

Q(z, f (z))

f (z) � f (x)

y � f (x)

Secant slope is
f (z) � f (x)

z � x

Derivative of f at x is

f '(x) � lim
h→0

� lim
z→x

f (x � h) � f (x)
h

f (z) � f (x)
z � x

FIGURE 3.1 The way we write the
difference quotient for the derivative of a
function ƒ depends on how we label the
points involved.
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and

EXAMPLE 2 Derivative of the Square Root Function

(a) Find the derivative of for 

(b) Find the tangent line to the curve at 

Solution

(a) We use the equivalent form to calculate 

(b) The slope of the curve at is

The tangent is the line through the point (4, 2) with slope (Figure 3.2):

We consider the derivative of when in Example 6.x = 0y = 1x

 y =
1
4

 x + 1.

 y = 2 +
1
4

 sx - 4d

1>4
ƒ¿s4d =

1

224
=

1
4

.

x = 4

 = lim
z:x

 
11z + 1x

=
1

21x
 .

 = lim
z:x

 
1z - 1x

A1z - 1x B A1z + 1x B

 = lim
z:x

 
1z - 1x

z - x

 ƒ¿sxd = lim
z:x

 
ƒszd - ƒsxd

z - x

ƒ¿ :

x = 4.y = 1x

x 7 0.y = 1x

 = lim
h:0

 
-1

sx + h - 1dsx - 1d
=

-1
sx - 1d2 .

 = lim
h:0

 
1
h

# -h
sx + h - 1dsx - 1d

a
b

-

c
d

=

ad - cb
bd

 = lim
h:0

 
1
h

#
sx + hdsx - 1d - xsx + h - 1d

sx + h - 1dsx - 1d

 = lim
h:0

 

x + h
x + h - 1

-

x
x - 1

h

 ƒ¿sxd = lim
h:0

 
ƒsx + hd - ƒsxd

h

ƒsx + hd =

sx + hd
sx + hd - 1

 , so

3.1 The Derivative as a Function 149

You will often need to know the
derivative of for 

d
dx

 1x =

1
21x

.

x 7 0:1x

x

y

0 4

(4, 2)

1

y � �x

y �    x � 11
4

FIGURE 3.2 The curve and its
tangent at (4, 2). The tangent’s slope is
found by evaluating the derivative at 
(Example 2).

x = 4

y = 1x
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