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Chapter 6 

Methods for Handling Deadlocks 

 
Generally speaking, we can deal with the deadlock problem in one of three ways: 

 We can use a protocol to prevent or avoid deadlocks, ensuring that the system will never 

enter a deadlocked state. 

 We can allow the system to enter a deadlocked state, detect it, and recover. 

 We can ignore the problem altogether and pretend that deadlocks never  occur in the 

system. 

The third solution is the one used by most operating systems, including Linux and Windows. It is 

then up to the application developer to write programs that handle deadlocks. 

 

Before proceeding, we should mention that some researchers have argued that none of the basic 

approaches alone is appropriate for the entire spectrum of  resource-allocation problems in 

operating systems. The basic approaches can  be combined, however, allowing us to select an 

optimal approach for each class of resources in a system. 

 

To ensure that deadlocks never occur, the system can use either deadlock prevention (stopping) 

or a deadlock-avoidance scheme. Deadlock prevention (not allowed )provides a set of methods 

to ensure that at least one of the necessary conditions (Section 7.2.1) cannot hold. These methods 

prevent deadlocks by constraining how requests for resources can be made. 

  

Deadlock avoidance requires that the operating system be given additional  information in 

advance concerning which resources a process will request and use during its lifetime. With this 

additional knowledge, the operating  system can decide for each request whether or not the 

process should wait. 

To decide whether the current request can be satisfied or must be delayed, the  system must 

consider the resources currently available, the resources currently allocated to each process, and 

the future requests and releases of each process. 
 

Safe State 
A state is safe if the system can allocate resources to each process (up to its maximum) in some 

order and still avoid a deadlock. More formally, a system is in a safe state only if there exists a 

safe sequence. A sequence of processes <P1 , P2, ..., Pn> is a safe sequence for the current 

allocation state if, for each Pi , the resource requests that Pi can still make can be satisfied by the 

currently available resources plus the resources held by all Pj, with j < i. In this situation, if the 

resources that Pi needs are not immediately available, then Pi can wait until all Pj have finished. 

When they have finished, Pi can obtain all of its needed resources, complete its designated task, 

return its allocated resources, and terminate. When Pi terminates, Pi+1 can obtain its needed 

resources, and so on. If no such sequence exists, then the system state is said to be unsafe. 

 

A safe state is not a deadlocked state. Conversely, a deadlocked state is an unsafe state. 

Not all unsafe states are deadlocks, however (Figure 7.6). An unsafe state may lead to a 

deadlock. 
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To illustrate, we consider a system with twelve magnetic tape drives and three processes: P0, P1 , 

and P2. Process P0 requires ten tape drives, process P1 may need as many as four tape drives, 

and process P2 may need up to nine tape drives. Suppose that, at time t0, process P0 is holding 

five tape drives, process P1 is holding two tape drives, and process P2 is holding two tape drives. 

(Thus, there are three free tape drives.) 

 

 
 

At time t0, the system is in a safe state. The sequence <P1, P0, and P2> satisfies the safety 

condition. Process P1 can immediately be allocated all its tape drives and then return them (the 

system will then have five available tape drives); then process P0 can get all its tape drives and 

return them (the system will then have ten available tape drives); and finally process P2 can get 

all its tape drives and return them (the system will then have all twelve tape drives available). A 

system can go from a safe state to an unsafe state. Suppose that, at time t1, process P2 requests 

and is allocated one more tape drive. The system is no longer in a safe state. At this point, only 

process P1 can be allocated all its tape drives. When it returns them, the system will have only 

four available tape drives. Since process P0 is allocated five tapes drives but has a maximum of 

ten, it may request five more tape drives. If it does so, it will have to wait, because they are 

unavailable. Similarly, process P2 may request six additional tape drives and have to wait, 

resulting in a deadlock. Our mistake was in granting the request from process P2 for one more 

tape drive. If we had made P2 wait until either of the other processes had finished and released 

its resources, then we could have avoided the deadlock. 

 

 

 

Claim edge. 
A claim edge Pi → Rj indicates that process Pi may request resource Rj at some time in the 

future. This edge resembles a request edge in direction but is represented in the graph by a 

dashed line. 

 
7.5.3 Banker’s Algorithm 
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The resource-allocation-graph algorithm is not applicable to a resource allocation system with multiple 

instances of each resource type. The dead lock avoidance algorithm that we describe next is applicable to 

such a system but is less efficient than the resource-allocation graph scheme. This algorithm is commonly 

known as the banker’s algorithm. The name was chosen because the algorithm could be used in a 

banking system to ensure that the bank never allocated its available cash in such a way that it could no 

longer satisfy the needs of all its customers. 

 

 
 
When a new process enters the system, it must declare the maximum number of instances of each 

resource type that it may need. This number may not exceed the total number of resources in the system. 

When a user requests a set of resources, the system must determine whether the allocation of these 

resources will leave the system in a safe state. If it will, the resources are allocated; otherwise, the process 

must wait until some other process releases enough resources. 

Several data structures must be maintained to implement the banker’s algorithm. These data structures 

encode the state of the resource-allocation system. We need the following data structures, where n is the 

number of processes in the system and m is the number of resource types: 
 

 Available. Vector of length m indicates the number of available resources of each 

type. If Available[j] equals k, then k instances of resource type Rj are available. 

 Max. An n × m matrix defines the maximum demand of each process. If Max[i][j] 

equals k, then process Pi may request at most k instances of resource type Rj . 

 Allocation. An n × m matrix defines the number of resources of each type 

currently allocated to each process. If Allocation[i][j] equals k, then process Pi is 

currently allocated k instances of resource type Rj . 

 Need. An n × m matrix indicates the remaining resource need of each process. If 

Need[i][j] equals k, then process Pi may need k more instances of resource type Rj 

to complete its task. Note that Need[i][j] equals Max[i][j] − Allocation[i][j]. 

These data structures vary over time in both size and value. To simplify the presentation of the 

banker’s algorithm, we next establish some notation. Let X and Y be vectors of length n.  

 

 

We say that X ≤ Y if and only if X[i] ≤ Y[i] for all i = 1, 2, ..., n. For example, if X = (1, 7, 3, 2) 

and Y = (0, 3, 2, 1), then Y ≤ X. In addition, Y < X if Y ≤ X and Y ≠ X. 

We can treat each row in the matrices Allocation and Need as vectors and refer to them as 

Allocation i and Need i. The vector Allocation i specifies the resources currently allocated to 
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process Pi; the vector Need i specifies the additional resources that process Pi may still request 

to complete its task. 

 

Safety Algorithm 

We can now present the algorithm for finding out whether or not a system is in a safe state. This 

algorithm can be described as follows: 

 

1. Let Work and Finish be vectors of length m and n, respectively. Initialize Work = 

Available and Finish[i] = false for i = 0, 1... n − 1. 

 

2.  Find an index i such that both 

 

a. Finish[i] == false 

b. Needi ≤Work 

If no such i exists, go to step 4.(end of all process) 

 

3. Work =Work + Allocationi 

Finish[i] = true 

Go to step 2. 

4. If Finish[i] == true for all i, then the system is in a safe state. 

 

This algorithm may require an order of m × n 
2 operations to determine whether a state is safe. 

 

Resource-Request Algorithm 

Next, we describe the algorithm for determining whether requests can be safely granted. Let 

Requesti be the request vector for process Pi. If Requesti [ j] == k, then process Pi wants k 

instances of resource type Rj . When a request for resources is made by process Pi, the following 

actions are taken: 

 

1. If Requesti ≤Needi , go to step 2. Otherwise, raise an error condition, since the process 

has exceeded its maximum claim. 

2. If Requesti ≤ Available, go to step 3. Otherwise, Pi must wait, since the resources are not 

available. 

3. Have the system pretend (offering) to have allocated the requested resources to process 

Pi by modifying the state  as follows: 

 

              Available = Available–Requesti ; 

              Allocationi = Allocationi + Requesti ; 

             Needi = Needi –Requesti ; 
 

If the resulting resource-allocation state is safe, the transaction is completed, and process Pi is 

allocated its resources. However, if the new state is unsafe, then Pi must wait for Requesti , and 

the old resource allocation state is restored. 
 

An Illustrative Example 
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To illustrate the use of the banker’s algorithm, consider a system with five processes P0 through 

P4 and three resource types A, B, and C. Resource type A has ten instances, resource type B has 

five instances, and resource type C has seven instances. Suppose that, at time T0, the following 

snapshot of the system has been taken: 
 

 
 

The content of the matrix Need is defined to be Max − Allocation and is as follows: 

 
 

We claim that the system is currently in a safe state. Indeed, the sequence <P1, P3, P4, P2, and 

P0> satisfies the safety criteria. Suppose now that process P1  requests one additional instance of 

resource type A and two instances of resource type C, so Request1 = (1,0,2). To decide whether 

this request can be immediately granted, we first check that Request1 ≤ Available—that is, that 

(1, 0, 2) ≤ (3, 3, 2), which is true. We then pretend that this request has been fulfilled, and we 

arrive at the following new state: 

 
 

 

We must determine whether this new system state is safe. To do so, we execute our safety 

algorithm and find that the sequence <P1 , P3, P4, P0, P2> satisfies the safety requirement. 

Hence, we can immediately grant the request of process P1 . 

You should be able to see, however, that when the system is in this state, a request for (3,3,0) by 

P4 cannot be granted, since the resources are not available. Furthermore, a request for (0,2,0) by 

P0 cannot be granted, even though the resources are available, since the resulting state is unsafe. 

We leave it as a programming exercise for students to implement the banker’s algorithm. 
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Deadlock Detection 
If a system does not employ either a deadlock-prevention or a deadlock avoidance algorithm, then a 

deadlock situation may occur. In this environment, the system may provide: 

 An algorithm that examines the state of the system to determine whether a deadlock has occurred 

 An algorithm to recover from the deadlock 

 

In the following discussion, we elaborate on these two requirements as they pertain to systems with only a 

single instance of each resource type, as well as to systems with several instances of each resource type. 

At this point, however, we note that a detection-and-recovery scheme requires overhead that includes not 

only the run-time costs of maintaining the necessary information and executing the detection algorithm 

but also the potential losses inherent in recovering from a deadlock. 

 

Single Instance of Each Resource Type 

If all resources have only a single instance, then we can define a deadlock detection algorithm that uses a 

variant of the resource-allocation graph, called a wait-for graph. We obtain this graph from the resource-

allocation graph by removing the resource nodes and collapsing the appropriate edges. 

 
 

 

More precisely, an edge from Pi to Pj in a wait-for graph implies that process Pi is waiting for process Pj 

to release a resource that Pi needs.  

An edge Pi → Pj exists in a wait-for graph if and only if the corresponding resource allocation graph 

contains two edges Pi → Rq and Rq → Pj for some resource Rq . In Figure 7.9, we present a resource-

allocation graph and the corresponding wait-for graph. 

As before, a deadlock exists in the system if and only if the wait-for graph contains a cycle. To detect 

deadlocks, the system needs to maintain the wait for graph and periodically invoke an algorithm that 

searches for a cycle in the graph. An algorithm to detect a cycle in a graph requires an order of n
2
 

operations, where n is the number of vertices in the graph. 

 

 

 

 

Several Instances of a Resource Type 
The wait-for graph scheme is not applicable to a resource-allocation system with multiple instances of 

each resource type. We turn now to a deadlock detection algorithm that is applicable to such a system. 

The algorithm employs several time-varying data structures that are similar to those used in the banker’s 

algorithm  
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• Available. A vector of length m indicates the number of available resources of each type. 

• Allocation. An n × m matrix defines the number of resources of each type currently allocated to each 

process. 

• Request. An n × m matrix indicates the current request of each process. 

If Request[i][j] equals k, then process Pi is requesting k more instances of resource type Rj . 

 

 The ≤ relation between two vectors is defined as in Section 7.5.3. To simplify notation, we again treat the 

rows in the matrices Allocation and Request as vectors; we refer to them as Allocationi and Requesti . 

The detection algorithm described here simply investigates every possible allocation sequence for the 

processes that remain to be completed. Compare this algorithm with the banker’s algorithm of Section 

7.5.3. 
 

1. Let Work and Finish be vectors of length m and n, respectively. 

 Initialize Work = Available. For i = 0, 1... n–1, if Allocationi ≠ 0, then Finish[i] = false. Otherwise, 

Finish[i] = true. 

 

2. Find an index i such that both 

a. Finish[i] == false 

b. Requesti ≤Work 

                                  If no such i exists, go to step 4. 

3. Work =Work + Allocationi 

o Finish[i] = true 

c. Go to step 2. 

4. If Finish[i] ==false for some i, 0≤i<n, then the system is in a deadlocked state. Moreover, if Finish[i] 

== false, then process Pi is deadlocked. 

 

This algorithm requires an order of m × n
2
 operations to detect whether the system is in a deadlocked 

state. 

You may wonder why we reclaim the resources of process Pi (in step 3) as soon as we determine that 

Requesti ≤ Work (in step 2b). We know that Pi is currently not involved in a deadlock (since Requesti ≤ 

Work). Thus, we take an optimistic attitude and assume that Pi will require no more resources to 

complete its task; it will thus soon return all currently allocated resources to the system. If our assumption 

is incorrect, a deadlock may occur later. That deadlock will be detected the next time the deadlock-

detection algorithm is invoked. To illustrate this algorithm, we consider a system with five processes P0 

through P4 and three resource types A, B, and C. Resource type A has seven instances, resource type B 

has two instances, and resource type C has six instances. Suppose that, at time T0, we have the following 

resource-allocation state: 
 

 
We claim that the system is not in a deadlocked state. Indeed, if we execute our algorithm, we will find 

that the sequence <P0, P2, P3, P1, P4> results in Finish[i] == true for all i. 



 University of Babylon / College of Information Technology / Network Department   

Operating System / Dr. Mahdi S. Almhanna & Dr. Rafah M. Almuttairi  

8 
 

Suppose now that process P2 makes one additional request for an instance of type C. The Request matrix 

is modified as follows: 
 

 
We claim that the system is now deadlocked. Although we can reclaim the resources held by process P0, the 

number of available resources is not sufficient to fulfill the requests of the other processes. Thus, a deadlock 

exists, consisting of processes P1, P2, P3, and P4. 

 

Recovery from Deadlock 
When a detection algorithm determines that a deadlock exists, several alternatives are available. One 

possibility is to inform the operator that a deadlock has occurred and to let the operator deal with the deadlock 

manually. Another possibility is to let the system recover from the deadlock automatically. There are two 

options for breaking a deadlock. One is simply to abort one or more processes to break the circular wait. The 

other is to preempt some resources from one or more of the deadlocked processes. 

 

Process Termination 
To eliminate deadlocks by aborting a process, we use one of two methods. In both methods, the system 

reclaims all resources allocated to the terminated processes. 

 

 Abort all deadlocked processes. This method clearly will break the deadlock cycle, but 

at great expense. The deadlocked processes may have computed for a long time, and the 

results of these partial computations must be discarded and probably will have to be 

recomputed later. 

o Abort one process at a time until the deadlock cycle is eliminated. This method incurs 

considerable overhead, since after each process is aborted, a deadlock-detection 

algorithm must be invoked to determine whether any processes are still deadlocked. 

 

Aborting a process may not be easy. If the process was in the midst of updating a file, terminating it will 

leave that file in an incorrect state. Similarly, if the process was in the midst of printing data on a printer, 

the system must reset the printer to a correct state before printing the next job. 

If the partial termination method is used, then we must determine which deadlocked process (or 

processes) should be terminated. This determination is a policy decision, similar to CPU-scheduling 

decisions. The question is basically an economic one; we should abort those processes whose termination 

will incur the minimum cost. Unfortunately, the term minimum cost is not a precise one. 

 

Many factors may affect which process is chosen, including: 

 

1. What the priority of the process is 

2. How long the process has computed and how much longer the process will compute before 

completing its designated task 

3. How many and what types of resources the process has used(for example, whether the resources 

are simple to preempt) 



 University of Babylon / College of Information Technology / Network Department   

Operating System / Dr. Mahdi S. Almhanna & Dr. Rafah M. Almuttairi  

9 
 

4. How many more resources the process needs in order to complete 

5. How many processes will need to be terminated 

6. Whether the process is interactive or batch 

 

Resource Preemption 

 
To eliminate deadlocks using resource preemption, we successively preempt some resources from 

processes and give these resources to other processes until the deadlock cycle is broken. 

If preemption is required to deal with deadlocks, then three issues need to be addressed: 

 

1. Selecting a victim. Which resources and which processes are to be preempted? As in process 

termination, we must determine the order of preemption to minimize cost. Cost factors may 

include such parameters as the number of resources a deadlocked process is holding and the 

amount of time the process has thus far consumed. 

 

2. Rollback. If we preempt a resource from a process, what should be done with that process? 

Clearly, it cannot continue with its normal execution; it is missing some needed resource. We 

must roll back the process to some safe state and restart it from that state.  

Since, in general, it is difficult to determine what a safe state is; the simplest solution is a total 

rollback: abort the process and then restart it. Although it is more effective to roll back the 

process only as far as necessary to break the deadlock, this method requires the system to keep 

more information about the state of all running processes. 

 

3. Starvation. How do we ensure that starvation will not occur? That is, how can we guarantee that 

resources will not always be preempted from the same process?  

In a system where victim selection is based primarily on cost factors, it may happen that the same 

process is always picked as a victim. As a result, this process never completes its designated task, 

a starvation situation any practical system must address. Clearly, we must ensure that a process 

can be picked as a victim only a (small) finite number of times. The most common solution is to 

include the number of rollbacks in the cost factor. 

 

 

 

 

 

 

 

 

 

 


