# Glycosides

# Introduction

### Definition:

Glycosides are non-reducing organic compounds that on hydrolysis with acids, alkalis or enzymes yield:

A sugar part (or glycone, formed of one or more sugar units).

A non-sugar part (or aglycone, also called genin).

# **Classification:**

#### Atom from the aglycone involved in the glycosidic linkage:

|   | Aglycone- O- Sugar | <b>O-glycosides</b> |               |
|---|--------------------|---------------------|---------------|
|   | Aglycone- C- Sugar | <b>C-glycosides</b> |               |
|   | Aglycone- S- Sugar | S-glycosides        |               |
|   | Aglycone- N- Sugar | N-glycosides        |               |
| J | Number of sugars:  |                     |               |
|   | One sugar          | monosides           | e.g. Salicin. |
|   | Two sugar          | Biosides            | e.g. Diosmir  |
|   | ■ Three sugars     | Triosides           | e.g. Digoxin  |

#### Nature of the glycoside:

- Primary glycosides: Originally present in the plant e.g. Purpurea A
- Secondary glycosides: Resulted from removal of one sugar from the primary glycosides
   e.g. Digitoxin

#### Type of the glycosidic linkage:

- $\alpha$  glycosides
- β- glycosides

#### Botanical source:

- Digitalis glycosides
- Senna glycosides.

#### Therapeutic use:

- Analgesic glycosides.
- Purgative glycosides.
- Cardiac glycosides.

#### Chemical nature of the aglycone:

- Flavone glycosides.
- Steroidal glycosides.
- Aldehydic glycosides.

# **Physical Characters:**

Solids either amorphous or crystalline.
Non volatile.
Usually bitter in taste.
Soluble in water and polar organic solvents.
Reduce Fehling's solutions only after hydrolysis.

# Stability of Glycosides:

### **<u>1- Effect of acid hydrolysis:</u>**

- Acids split sugars from the aglycones.
- The acetal linkage is more readily cleaved than the linkage between the individual sugars of the sugar chain.
- C-glycosides are resistant to acid hydrolysis.

### 2- Effect of alkaline hydrolysis:

A- Strong alkalis:

Hydrolysis of ester groups.

Opening of lactone rings e.g. Cardiac glycosides.

**B-** Mild alkalis:

Hydrolysis of ester groups e.g. Lanatoside A to Purpurea A
Opening of lactone rings e.g. Cardiac glycosides.

### 3- Enzymatic hydrolysis:

- Split the sugars stepwise starting from the terminal sugars.
- All plants producing glycosides have enzyme that can hydrolyze these glycosides.
- Enzymes are specific for the type of glycosidic linkages:
  - Emulsin can hydrolyze β- glycosides
  - Invertase can hydrolyze α- glycosides
  - Myrosin can hydrolyze s-glycosides.

# **Extraction and Isolation**

- Because of the wide range of physical and chemical properties of glycosides and other constituents associated with them, no common general method for their isolation is recommended.
- Water, methanol, water-ethanol and ethanol are the most common solvents for extraction of glycosides.

#### Precautions before extraction

#### Deactivation of enzymes:

- **Drying** for 15-30 min at **100 oC** followed by slow drying at a low temperature.
- Dipping the fresh material into boiling water or boiling alcohol for 10-20 min.
- **Boiling** the fresh plant material with **acetone**.
- Carrying out the extraction at very low temp.
- **Freeze-drying** of the plant material **before extraction** (lyophilization).
- Carrying the extraction in the presence of  $(NH_4)_2SO_4$ .

### Maintenance of neutral conditions:

- Neutral pH should be assured before and during extraction because:
- Acidity may result in hydrolysis. This is overcome by addition of CaCO3.
- Mild alkalinity may sometimes produce racemization.

### Defatting of fat-rich organs (e.g. seeds) before <u>extraction</u>:

High amounts of lipoids hinder glycoside extraction.
 Defatting is usually carried with petroleum ether

# Alcoholic and Phenolic Glycosides 1- Salicin

- Source: Salix species (Willow bark).
- Nature: Primary achholic and Phenolic glycoside (monoside).
- Uses: Analgesic- Antipyretic- Anti-inflammatory.





2- Arbutin & Methyl Arbutin
Source: Uva Ursi (Bearberry leaves).
Nature: Primary Phenolic glycoside (monoside).
Uses: Diuretic- Bactericidal.







Aldehydic Glycosides 1- Glucovanillin

- Source: Vanilla pods.
- > Uses: Flavouring agent- Spray reagent.









### **Commercial Preparation of Vanillin**



## **Cyanogenic Glycosides**

- Cyanogenic glycosides (Cyanogentic or Cyanophore Glycosides) are O-glycosides yielding HCN gas on hydrolysis.
- They are condensation products of HCN to a carbonyl compounds (Cyanohydrin).



### 1- Amygdalin

Source: Bitter Almond.

> Structures: It is a Bioside of mandilonitril.



### 2- Linamarin

Source: Linseed.

Structures: It is the glycosidic derivative of the cyanohydrin of acetone.



#### > Uses:

> Linamarin has a molluscecidal activity.
> Amygdalin is used for the preparation of Benzaldehyde.
> Cyanogenic glycosides have role in cancer treatment.



### Test for Cyanogenic Glycosides:

- Reduce plant material to small pieces and moisten with water.
- Incubate at temp. less than 45 °C for 30 60 mins with the neck of the flask stoppered and have suspended sodium picrate paper.
- The paper will turns brick red due to the release of HCN gas.

# Thioglycoside Glucosinolates- Sulphur Glycosides

- They are S-glycosides widely distributed in family Cruciferae.
- Sinigrin: In seeds of *Brassica nigra* (black mustard).
- Sinalbin: In Seeds of *Brassica alba* (white mustard).



Uses: Rubefacients, Counter irritants and condiment.





### Garlic

- It consists of the bulb of Allium sativum Fam. Liliaceae.
- The intact cells of garlic contain an odorless, sulfur-containing amino acid derivative (+)-S-allyl-L-cysteine sulfoxide, commonly known as alliin.
- Alliin is hydrolyzed by the effect of alliinase enzyme present in different cells after crushing into allicin (diallyl thiosulfinate).
- Allicin is responsible for the characteristic odor and flavor of garlic.
- Allicin is a potent antibacterial, antihyperlipidemic, and it inhibits platelet aggregation and enhances the blood fibrinolytic activity.

