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Problem Reduction 

  Sometimes problems only seem hard to solve. 

 

 A hard problem may be one that can be 

reduced to a number of simple problems...and, 

when each of the simple problems is solved, 

then the hard problem has been solved. 

 

 This is the basic intuition behind the method of 

problem reduction. 



Problem Reduction 

 If we are looking for a sequence of actions to 

achieve some goal, then one way to do it is to 

use state-space search, where each node in 

you search space is a state of the world, and 

you are searching for a sequence of actions 

that get you from an initial state to a final state. 

 



Problem Reduction 

 Another way is to consider the different ways 
that the goal state can be decomposed into 
simpler sub-goals. 
 

 For example, when planning a trip to London 
you probably don't want to search through all 
the possible sequences of actions that might 
get you to London. 
 

 You're more likely to decompose the problem 
into simpler ones - such as getting to the 
station, then getting a train to London. 



Problem Reduction 

 There may be more than one possible way of 

decomposing the problem - an alternative 

strategy might be to get to the airport, fly to 

Heathrow, and get the tube from Heathrow 

into London. 

 

 These different possible plans would have 

different costs (and benefits) associated 

with them, and you might have to choose the 

best plan. 



Problem Reduction 

 The Simple State-space Search Techniques 

Described In The Above Slides Could All Be 

Represented Using A Tree Where Each 

Successor Node Represents An Alternative 

Action To Be Taken. 
 

 The Graph Structure Being Searched Is 

Referred To As An Or Graph. 
 

 In Or Graph We Want To Find A Single Path 

To A Goal. 



Problem Reduction 

 This is due to the fact that we will know how to 

get to from a node to a goal state if we can 

discover how to get from that node to a goal 

state along any one of the branches leaving it. 

 

 To represent problem reduction techniques we 

need to use an AND-OR graph/tree. 



Problem Reduction 

 Problem reduction technique using AND-OR 

graph is useful for representing a solution of 

a problems that can be solved by 

decomposing them into a set of smaller 

problems all of which must be solved. 
 

 Here, you can have and nodes whose 

successors must all be achieved, and or 

nodes where one of the successors must be 

achieved (ie, they are alternatives). 



Problem Reduction 

 This decomposition or reduction, generates 
arcs that we call AND arcs. 
 

 One AND arc may point to a number of 
successor nodes, all of which must be solved in 
order for the arc to point to a solution. 
 

 As in OR graph, several arcs may emerge from a 
single node, indicating the variety of ways in 
which the original problem might be solved. 
That is why is called AND-OR graph 



Problem Reduction 

 This Allows Us To Represent Both Cases Where 

ALL Of A Set Of Sub-goals Must Be Satisfied To 

Achieve Some Goal, And Where There Are 

Alternative Sub-goals, Any Of Which Could 

Achieve The Goal. 



Problem Reduction 

 To find a way to get to London we need to 

search this tree to find a set of simple goals 

that we trivially know how to satisfy. Maybe 

ordering a taxi is a primitive goal - we could 

decompose it into ``pick up phone, dial 

number ..'' but this wouldn't be very helpful. 

Anyway, we need to apply our basic ideas of 

tree/graph search to searching AND-OR 

trees/graphs. 



Problem Reduction 

 The typical problem that is used to illustrate 
problem reduction search is the Tower of Hanoi 
problem because this problem has a very 
elegant solution using this method. 
 

 64 size ordered disks occupy one of 3 pegs 
and must be transferred to one of the other 
pegs. But, only one disk can be moved at a 
time; and a larger disk may never be placed on 
a smaller disk. 



Problem Reduction 

 The figure below shows the state space 

associated with a 3-disk Tower of Hanoi 

Problem. The problem involves moving from 

a state where the disks are stacked on one 

of the pegs and moving them so that they 

end up stacked on a different peg. 
 

 In this case, we will consider the state at the 

top of the figure the starting state. In this 

case all three disks are on the left-most peg. 



Problem Reduction 

 And we will consider the state at the bottom 

right to be the goal state. In this state the three 

disks are now all stacked on the right-most peg. 



Problem Reduction  
State Space For The 3 Disk Tower Of Hanoi Problem 

 



Problem Reduction 

  Recall that in state space search the 

generators correspond to moves in the state 

space. 

  Thus, the two states below the top state in 

the triangle of states corresponds to the 

movement of the smallest disk either to the 

rightmost peg or to the middle peg. 

 The shortest solution to this problem 

corresponds to the path down the right side 

of the state space. 



Problem Reduction 

 In problem reduction search the problem space 

consists of an AND/OR graph of (partial) state 

pairs. These pairs are referred to as 

(sub)problems. 

 The first element of the pair is the starting 

state of the (sub)problem and the second 

element of the pair is the goal state 

(sub)problem. 



Problem Reduction 

 The symmetry of the state space shown above 

may have led you to suspect that the Tower of 

Hanoi problem can be elegantly solved using 

the method of problem decomposition. 

 The AND tree that solves the 3 disk problem is 

shown below 



Problem Reduction 

 AND Tree Showing the Problem Reduction Solution to the 3 

Disk Tower of Hanoi Problem 

 



Types of Problem Spaces 

 There are several types of problem spaces: 

 State space 

 Problem Reduction Space 

 AND/OR Graphs 



State Space 

 The states represent situations of the problem. 

 The operators represent actions in the world. 

 forward search:  the root of the problem space represents the 

start state, and the search proceeds forward to a goal state. 

 backward search : the root of the problem space represents the 

goal state, and the search proceeds backward to the initial state. 

 For example: in Rubik’s Cube and the Sliding-Tile Puzzle, 
either a forward or backward search are possible. 



 In a problem reduction space, the nodes represent 

problems to be solved or goals to be achieved, and the 

edges represent the decomposition of the problem into 

subproblems. 

 This is best illustrated by the example of the Towers of 

Hanoi problem.   

Problem Reduction Space 
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Problem Reduction Space 

 The root node, labeled “3AC” represents the original problem of 

transferring all 3 disks from peg A to peg C.  

 The goal can be decomposed into three subgoals: 2AB, 1AC, 

2BC. In order to achieve the goal, all 3 subgoals must be 

achieved. 
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 An AND Graph Consists Entirely Of AND Nodes, And In 

Order To Solve A Problem Represented By It, You Need To 

Solve The Problems Represented By All Of His Children 

(Hanoi Towers Example). 

 An Or Graph Consists Entirely Of Or Nodes, And In Order 

To Solve The Problem Represented By It, You Only Need 

To Solve The Problem Represented By One Of His 

Children (Eight Puzzle Tree Example). 

AND/OR GRAPHS 



 An AND/OR graph consists of both AND nodes and OR 

nodes. 

 One source of AND/OR graphs is a problem where the 

effect of an action cannot be predicted in advanced, as 

in an interaction with the physical world.  

 Example:  

 the counterfeit-coin problem.  

AND/OR GRAPHS 



5-stone Nim Problem 

 this game is played with two players and a pile 

of stones. Suppose we have 15 stones to start 

with. Each player removes either one or two 

stones from the pile and the player who 

removes the last stone wins the game.  



 Initially let us assume that we start with 5 stones. 
Now, at this position the max player can move 
either one stone or two stones giving rise to either 
4 or 3 stones left over. The min player can remove 
either 1 or 2 stones from 4 or from 3. Again the 
max player can remove 1 or 2 stones etc., and we 
stop expanding the tree until all the leaves have 0 
that is no stone left. The box represents the max 
player and circle represents the min player. This is 
the max player and this is the min player.  



Two-player Game Trees 

 The most common source of AND/OR graphs is     

   2-player perfect-information games. 

 Example: Game Tree for 5-Stone Nim: 
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MINIMAX THEOREM 

 The Minimax theorem states that every two person zero 
sum game is a forced win for one player or a forced draw 
for either player, in principle these optimal MINIMAX 
strategies can be computed. So, if we have the pay offs 
at the leaves and we back this up finally at the root we 
will get a value. That value can be either 0 or positive or 
negative. So if the value is positive, if max plays 
judiciously max can force a win from this position. If the 
backed up pay off value at the root is negative no matter 
how well max plays if min plays well and extremely 
intelligently then min can force Max’s loss. If the pay off 
is zero if both the players play at their best this game 
would end in a draw  



Solution Subgraph For AND/OR Trees 

 In general, a solution to an AND/OR graph is a subgraph 

with the following properties: 

  It contains the root node. For every OR node included in 

the solution subgraph, one child is included.  

 For every OR node included in the solution subgraph, all 

the children are included.  

 Every terminal node in the solution subgraph is a solved 

node. 



SOLUTIONS 

 The notion of a solution is different for the different problem 

types:  

 For a path-finding problem, an optimal solution is a solution of 

lowest cost. 

 For a CSP(Constraint Satisfaction Problem), if there is a cost 

function associated with a state of the problem, an optimal 

solution would again be one of lowest cost. 

 For a 2-player game:  

 If the solution is simply a move to be made, an optimal solution 

would be the best possible move that can be made in a given 

situation.  

 If the solution is considered a complete strategy subgraph, 

then an optimal solution might be one that forces a win in the 

fewest number of moves in the worst case. 



Combinatorial Explosion 

 The number of different states of the problems above is 

enormous, and grows extremely fast as the problem size 

increases. 

 Examples for the number of different possibilities:  

# of nodesGame
9!8-Puzzle
16!15-Puzzle
25!24-Puzzle
3,265,920Rubik’s Cube- 2x2x2

4.32x10
19

Rubik’s Cube- 3x3x3
n!N-city TSP
10

20
Checkers

10
40

Chess
n!N-Queens

 



 The combinatorial explosion of the number of possible 

states as a function of problem size is a key 

characteristic that separates artificial intelligence search 

algorithms in other areas  of computer science. 

 Techniques that rely on storing all possibilities in memory, 

or even generating all possibilities, are out of the 

question except for the smallest of these problems. As a 

result, the problem-space graphs  of AI problems are 

usually represented implicitly by specifying an initial state 

and a set of operators to generate new states. 

Combinatorial Explosion 


