
Problem Reduction

Dr. Asaad Sabah Hadi

Problem Reduction

 Sometimes problems only seem hard to solve.

 A hard problem may be one that can be

reduced to a number of simple problems...and,

when each of the simple problems is solved,

then the hard problem has been solved.

 This is the basic intuition behind the method of

problem reduction.

Problem Reduction

 If we are looking for a sequence of actions to

achieve some goal, then one way to do it is to

use state-space search, where each node in

you search space is a state of the world, and

you are searching for a sequence of actions

that get you from an initial state to a final state.

Problem Reduction

 Another way is to consider the different ways
that the goal state can be decomposed into
simpler sub-goals.

 For example, when planning a trip to London
you probably don't want to search through all
the possible sequences of actions that might
get you to London.

 You're more likely to decompose the problem
into simpler ones - such as getting to the
station, then getting a train to London.

Problem Reduction

 There may be more than one possible way of

decomposing the problem - an alternative

strategy might be to get to the airport, fly to

Heathrow, and get the tube from Heathrow

into London.

 These different possible plans would have

different costs (and benefits) associated

with them, and you might have to choose the

best plan.

Problem Reduction

 The Simple State-space Search Techniques

Described In The Above Slides Could All Be

Represented Using A Tree Where Each

Successor Node Represents An Alternative

Action To Be Taken.

 The Graph Structure Being Searched Is

Referred To As An Or Graph.

 In Or Graph We Want To Find A Single Path

To A Goal.

Problem Reduction

 This is due to the fact that we will know how to

get to from a node to a goal state if we can

discover how to get from that node to a goal

state along any one of the branches leaving it.

 To represent problem reduction techniques we

need to use an AND-OR graph/tree.

Problem Reduction

 Problem reduction technique using AND-OR

graph is useful for representing a solution of

a problems that can be solved by

decomposing them into a set of smaller

problems all of which must be solved.

 Here, you can have and nodes whose

successors must all be achieved, and or

nodes where one of the successors must be

achieved (ie, they are alternatives).

Problem Reduction

 This decomposition or reduction, generates
arcs that we call AND arcs.

 One AND arc may point to a number of
successor nodes, all of which must be solved in
order for the arc to point to a solution.

 As in OR graph, several arcs may emerge from a
single node, indicating the variety of ways in
which the original problem might be solved.
That is why is called AND-OR graph

Problem Reduction

 This Allows Us To Represent Both Cases Where

ALL Of A Set Of Sub-goals Must Be Satisfied To

Achieve Some Goal, And Where There Are

Alternative Sub-goals, Any Of Which Could

Achieve The Goal.

Problem Reduction

 To find a way to get to London we need to

search this tree to find a set of simple goals

that we trivially know how to satisfy. Maybe

ordering a taxi is a primitive goal - we could

decompose it into ``pick up phone, dial

number ..'' but this wouldn't be very helpful.

Anyway, we need to apply our basic ideas of

tree/graph search to searching AND-OR

trees/graphs.

Problem Reduction

 The typical problem that is used to illustrate
problem reduction search is the Tower of Hanoi
problem because this problem has a very
elegant solution using this method.

 64 size ordered disks occupy one of 3 pegs
and must be transferred to one of the other
pegs. But, only one disk can be moved at a
time; and a larger disk may never be placed on
a smaller disk.

Problem Reduction

 The figure below shows the state space

associated with a 3-disk Tower of Hanoi

Problem. The problem involves moving from

a state where the disks are stacked on one

of the pegs and moving them so that they

end up stacked on a different peg.

 In this case, we will consider the state at the

top of the figure the starting state. In this

case all three disks are on the left-most peg.

Problem Reduction

 And we will consider the state at the bottom

right to be the goal state. In this state the three

disks are now all stacked on the right-most peg.

Problem Reduction
State Space For The 3 Disk Tower Of Hanoi Problem

Problem Reduction

 Recall that in state space search the

generators correspond to moves in the state

space.

 Thus, the two states below the top state in

the triangle of states corresponds to the

movement of the smallest disk either to the

rightmost peg or to the middle peg.

 The shortest solution to this problem

corresponds to the path down the right side

of the state space.

Problem Reduction

 In problem reduction search the problem space

consists of an AND/OR graph of (partial) state

pairs. These pairs are referred to as

(sub)problems.

 The first element of the pair is the starting

state of the (sub)problem and the second

element of the pair is the goal state

(sub)problem.

Problem Reduction

 The symmetry of the state space shown above

may have led you to suspect that the Tower of

Hanoi problem can be elegantly solved using

the method of problem decomposition.

 The AND tree that solves the 3 disk problem is

shown below

Problem Reduction

 AND Tree Showing the Problem Reduction Solution to the 3

Disk Tower of Hanoi Problem

Types of Problem Spaces

 There are several types of problem spaces:

 State space

 Problem Reduction Space

 AND/OR Graphs

State Space

 The states represent situations of the problem.

 The operators represent actions in the world.

 forward search: the root of the problem space represents the

start state, and the search proceeds forward to a goal state.

 backward search : the root of the problem space represents the

goal state, and the search proceeds backward to the initial state.

 For example: in Rubik’s Cube and the Sliding-Tile Puzzle,
either a forward or backward search are possible.

 In a problem reduction space, the nodes represent

problems to be solved or goals to be achieved, and the

edges represent the decomposition of the problem into

subproblems.

 This is best illustrated by the example of the Towers of

Hanoi problem.

Problem Reduction Space

C A B A C B

2AB

3AC

1AC 2BC

1AC 1AB 1CB 1BA 1BC 1AC

Problem Reduction Space

 The root node, labeled “3AC” represents the original problem of

transferring all 3 disks from peg A to peg C.

 The goal can be decomposed into three subgoals: 2AB, 1AC,

2BC. In order to achieve the goal, all 3 subgoals must be

achieved.

Problem Reduction Space

3AC

C A B

Problem Reduction Space

3AC

2AB

1AC

C A B

Problem Reduction Space

3AC

2AB

1AC 1AB

C A B

Problem Reduction Space

C A B

3AC

2AB

1AC 1AB 1CB

Problem Reduction Space

C A B

3AC

2AB

1AC 1AB 1CB

1AC

Problem Reduction Space

3AC

2AB

1AC 1AB 1CB

1AC 2BC

1BA

C A B

Problem Reduction Space

3AC

2AB

1AC 1AB 1CB

1AC 2BC

1BA 1BC

C A B

Problem Reduction Space

C A B

3AC

2AB

1AC 1AB 1CB

1AC 2BC

1BA 1BC 1AC

 An AND Graph Consists Entirely Of AND Nodes, And In

Order To Solve A Problem Represented By It, You Need To

Solve The Problems Represented By All Of His Children

(Hanoi Towers Example).

 An Or Graph Consists Entirely Of Or Nodes, And In Order

To Solve The Problem Represented By It, You Only Need

To Solve The Problem Represented By One Of His

Children (Eight Puzzle Tree Example).

AND/OR GRAPHS

 An AND/OR graph consists of both AND nodes and OR

nodes.

 One source of AND/OR graphs is a problem where the

effect of an action cannot be predicted in advanced, as

in an interaction with the physical world.

 Example:

 the counterfeit-coin problem.

AND/OR GRAPHS

5-stone Nim Problem

 this game is played with two players and a pile

of stones. Suppose we have 15 stones to start

with. Each player removes either one or two

stones from the pile and the player who

removes the last stone wins the game.

 Initially let us assume that we start with 5 stones.
Now, at this position the max player can move
either one stone or two stones giving rise to either
4 or 3 stones left over. The min player can remove
either 1 or 2 stones from 4 or from 3. Again the
max player can remove 1 or 2 stones etc., and we
stop expanding the tree until all the leaves have 0
that is no stone left. The box represents the max
player and circle represents the min player. This is
the max player and this is the min player.

Two-player Game Trees

 The most common source of AND/OR graphs is

 2-player perfect-information games.

 Example: Game Tree for 5-Stone Nim:

5

4 3

3 2 2 1

2 1 1 0 1 0 0

1 0 0 0 0

0

OR nodes

AND nodes

x

x

MINIMAX THEOREM

 The Minimax theorem states that every two person zero
sum game is a forced win for one player or a forced draw
for either player, in principle these optimal MINIMAX
strategies can be computed. So, if we have the pay offs
at the leaves and we back this up finally at the root we
will get a value. That value can be either 0 or positive or
negative. So if the value is positive, if max plays
judiciously max can force a win from this position. If the
backed up pay off value at the root is negative no matter
how well max plays if min plays well and extremely
intelligently then min can force Max’s loss. If the pay off
is zero if both the players play at their best this game
would end in a draw

Solution Subgraph For AND/OR Trees

 In general, a solution to an AND/OR graph is a subgraph

with the following properties:

 It contains the root node. For every OR node included in

the solution subgraph, one child is included.

 For every OR node included in the solution subgraph, all

the children are included.

 Every terminal node in the solution subgraph is a solved

node.

SOLUTIONS

 The notion of a solution is different for the different problem

types:

 For a path-finding problem, an optimal solution is a solution of

lowest cost.

 For a CSP(Constraint Satisfaction Problem), if there is a cost

function associated with a state of the problem, an optimal

solution would again be one of lowest cost.

 For a 2-player game:

 If the solution is simply a move to be made, an optimal solution

would be the best possible move that can be made in a given

situation.

 If the solution is considered a complete strategy subgraph,

then an optimal solution might be one that forces a win in the

fewest number of moves in the worst case.

Combinatorial Explosion

 The number of different states of the problems above is

enormous, and grows extremely fast as the problem size

increases.

 Examples for the number of different possibilities:

of nodesGame
9!8-Puzzle
16!15-Puzzle
25!24-Puzzle
3,265,920Rubik’s Cube- 2x2x2

4.32x10
19

Rubik’s Cube- 3x3x3
n!N-city TSP
10

20
Checkers

10
40

Chess
n!N-Queens

 The combinatorial explosion of the number of possible

states as a function of problem size is a key

characteristic that separates artificial intelligence search

algorithms in other areas of computer science.

 Techniques that rely on storing all possibilities in memory,

or even generating all possibilities, are out of the

question except for the smallest of these problems. As a

result, the problem-space graphs of AI problems are

usually represented implicitly by specifying an initial state

and a set of operators to generate new states.

Combinatorial Explosion

