
B E R N O U L L I  A N D  E N E R G Y
E Q U AT I O N S

This chapter deals with two equations commonly used in fluid mechan-
ics: Bernoulli and energy equations. The Bernoulli equation is con-
cerned with the conservation of kinetic, potential, and flow energies of

a fluid stream and their conversion to each other in regions of flow where net
viscous forces are negligible and where other restrictive conditions apply.
The energy equation is a statement of the conservation of energy principle. In
fluid mechanics, it is found convenient to separate mechanical energy from
thermal energy and to consider the conversion of mechanical energy to ther-
mal energy as a result of frictional effects as mechanical energy loss. Then
the energy equation becomes the mechanical energy balance.

In this chapter we derive the Bernoulli equation by applying Newton’s
second law to a fluid element along a streamline and demonstrate its use in
a variety of applications. We continue with the development of the energy
equation in a form suitable for use in fluid mechanics and introduce
the concept of head loss. Finally, we apply the energy equation to various
engineering systems.
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12
Objectives

The objectives of this chapter are to:

■ Understand the use and
limitations of the Bernoulli
equation, and apply it to solve a
variety of fluid flow problems.

■ Work with the energy equation
expressed in terms of heads, and
use it to determine turbine
power output and pumping
power requirements.
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12–1 ■ THE BERNOULLI EQUATION
The Bernoulli equation is an approximate relation between pressure,
velocity, and elevation, and is valid in regions of steady, incompressible
flow where net frictional forces are negligible (Fig. 12–1). Despite its sim-
plicity, it has proven to be a very powerful tool in fluid mechanics. In this
section, we derive the Bernoulli equation by applying the conservation of
linear momentum principle, and we demonstrate both its usefulness and its
limitations.

The key approximation in the derivation of the Bernoulli equation is that
viscous effects are negligibly small compared to inertial, gravitational, and
pressure effects. Since all fluids have viscosity (there is no such thing as an
“inviscid fluid”), this approximation cannot be valid for an entire flow field
of practical interest. In other words, we cannot apply the Bernoulli equation
everywhere in a flow, no matter how small the fluid’s viscosity. However, it
turns out that the approximation is reasonable in certain regions of many
practical flows. We refer to such regions as inviscid regions of flow, and we
stress that they are not regions where the fluid itself is inviscid or friction-
less, but rather they are regions where net viscous or frictional forces are
negligibly small compared to other forces acting on fluid particles.

Care must be exercised when applying the Bernoulli equation since it is
an approximation that applies only to inviscid regions of flow. In general,
frictional effects are always important very close to solid walls (boundary
layers) and directly downstream of bodies (wakes). Thus, the Bernoulli
approximation is typically useful in flow regions outside of boundary layers
and wakes, where the fluid motion is governed by the combined effects of
pressure and gravity forces.

Acceleration of a Fluid Particle
The motion of a particle and the path it follows are described by the velocity
vector as a function of time and space coordinates and the initial position of
the particle. When the flow is steady (no change with time at a specified
location), all particles that pass through the same point follow the same path
(which is the streamline), and the velocity vectors remain tangent to the
path at every point.

Often it is convenient to describe the motion of a particle in terms of its
distance s along a streamline together with the radius of curvature along 
the streamline. The speed of the particle is related to the distance by 
V � ds/dt, which may vary along the streamline. In two-dimensional flow,
the acceleration can be decomposed into two components: streamwise
acceleration as along the streamline and normal acceleration an in the
direction normal to the streamline, which is given as an � V2/R. Note that
streamwise acceleration is due to a change in speed along a streamline, and
normal acceleration is due to a change in direction. For particles that move
along a straight path, an � 0 since the radius of curvature is infinity and thus
there is no change in direction. The Bernoulli equation results from a force
balance along a streamline.

One may be tempted to think that acceleration is zero in steady flow since
acceleration is the rate of change of velocity with time, and in steady flow
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Bernoulli equation valid

Bernoulli equation not valid

FIGURE 12–1
The Bernoulli equation is an
approximate equation that is valid
only in inviscid regions of flow where
net viscous forces are negligibly small
compared to inertial, gravitational, or
pressure forces. Such regions occur
outside of boundary layers and wakes.
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there is no change with time. Well, a garden hose nozzle tells us that this
understanding is not correct. Even in steady flow and thus constant mass
flow rate, water accelerates through the nozzle (Fig. 12–2). Steady simply
means no change with time at a specified location, but the value of a quantity
may change from one location to another. In the case of a nozzle, the velocity
of water remains constant at a specified point, but it changes from the inlet
to the exit (water accelerates along the nozzle).

Mathematically, this can be expressed as follows: We take the velocity V
of a fluid particle to be a function of s and t. Taking the total differential of
V(s, t) and dividing both sides by dt yield

(12–1)

In steady flow ∂V/∂t � 0 and thus V � V(s), and the acceleration in the s-
direction becomes

(12–2)

where V � ds/dt if we are following a fluid particle as it moves along a
streamline. Therefore, acceleration in steady flow is due to the change of
velocity with position.

Derivation of the Bernoulli Equation
Consider the motion of a fluid particle in a flow field in steady flow.
Applying Newton’s second law (which is referred to as the linear momen-
tum equation in fluid mechanics) in the s-direction on a particle moving
along a streamline gives

(12–3)

In regions of flow where net frictional forces are negligible, there is no
pump or turbine, and there is no heat transfer along the streamline, the sig-
nificant forces acting in the s-direction are the pressure (acting on both
sides) and the component of the weight of the particle in the s-direction
(Fig. 12–3). Therefore, Eq. 12–3 becomes

(12–4)

where u is the angle between the normal of the streamline and the vertical z-
axis at that point, m � rV � r dA ds is the mass, W � mg � rg dA ds is
the weight of the fluid particle, and sin u � dz/ds. Substituting,

(12–5)

Canceling dA from each term and simplifying,

(12–6)

Noting that V dV � d(V2) and dividing each term by r gives

(12–7)
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FIGURE 12–2
During steady flow, a fluid may not

accelerate in time at a fixed point, but
it may accelerate in space.
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FIGURE 12–3
The forces acting on a fluid 
particle along a streamline.
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Integrating,

Steady flow: (12–8)

since the last two terms are exact differentials. In the case of incompressible
flow, the first term also becomes an exact differential, and integration gives

Steady, incompressible flow: (12–9)

This is the famous Bernoulli equation (Fig. 12–4), which is commonly
used in fluid mechanics for steady, incompressible flow along a streamline
in inviscid regions of flow. The Bernoulli equation was first stated in words
by the Swiss mathematician Daniel Bernoulli (1700–1782) in a text written
in 1738 when he was working in St. Petersburg, Russia. It was later derived
in equation form by his associate Leonhard Euler (1707–1783) in 1755.

The value of the constant in Eq. 12–9 can be evaluated at any point on the
streamline where the pressure, density, velocity, and elevation are known.
The Bernoulli equation can also be written between any two points on the
same streamline as

Steady, incompressible flow: (12–10)

We recognize V2/2 as kinetic energy, gz as potential energy, and P/r as flow
energy, all per unit mass. Therefore, the Bernoulli equation can be viewed
as an expression of mechanical energy balance and can be stated as follows
(Fig. 12–5):

The sum of the kinetic, potential, and flow energies of a fluid particle 
is constant along a streamline during steady flow when compressibility 
and frictional effects are negligible.

The kinetic, potential, and flow energies are the mechanical forms of
energy, and the Bernoulli equation can be viewed as the “conservation of
mechanical energy principle.” This is equivalent to the general conservation
of energy principle for systems that do not involve any conversion of
mechanical energy and thermal energy to each other, and thus the mechani-
cal energy and thermal energy are conserved separately. The Bernoulli equa-
tion states that during steady, incompressible flow with negligible friction,
the various forms of mechanical energy are converted to each other, but their
sum remains constant. In other words, there is no dissipation of mechanical
energy during such flows since there is no friction that converts mechanical
energy to sensible thermal (internal) energy.

Recall that energy is transferred to a system as work when a force is
applied to the system through a distance. In the light of Newton’s second
law of motion, the Bernoulli equation can also be viewed as: The work done
by the pressure and gravity forces on the fluid particle is equal to the
increase in the kinetic energy of the particle.

The Bernoulli equation is obtained from Newton’s second law for a
fluid particle moving along a streamline. It can also be obtained from the
first law of thermodynamics applied to a steady-flow system, as shown in
Section 12–2.
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FIGURE 12–4
The incompressible Bernoulli 
equation is derived assuming
incompressible flow, and thus it
should not be used 
for flows with significant
compressibility effects.
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FIGURE 12–5
The Bernoulli equation states that the
sum of the kinetic, potential, and flow
energies (all per unit mass) of a fluid
particle is constant along a streamline
during steady flow.
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Despite the highly restrictive approximations used in its derivation, the
Bernoulli equation is commonly used in practice since a variety of practical
fluid flow problems can be analyzed to reasonable accuracy with it. This is
because many flows of practical engineering interest are steady (or at least
steady in the mean), compressibility effects are relatively small, and net
frictional forces are negligible in some regions of interest in the flow.

Force Balance across Streamlines
It is left as an exercise to show that a force balance in the direction n normal
to the streamline yields the following relation applicable across the stream-
lines for steady, incompressible flow:

(12–11)

where R is the local radius of curvature of the streamline. For flow along
curved streamlines (Fig 12–6a), the pressure decreases towards the center of
curvature, and fluid particles experience a corresponding centripetal force
and centripetal acceleration due to this pressure gradient.

For flow along a straight line, R → � and Eq. 12–11 reduces to P/r� gz �
constant or P � �rgz � constant, which is an expression for the variation of
hydrostatic pressure with vertical distance for a stationary fluid body. There-
fore, the variation of pressure with elevation in steady, incompressible flow
along a straight line in an inviscid region of flow is the same as that in the
stationary fluid (Fig. 12–6b).

Unsteady, Compressible Flow
Similarly, using both terms in the acceleration expression (Eq. 12–3), it can
be shown that the Bernoulli equation for unsteady, compressible flow is

Unsteady, compressible flow: (12–12)

Static, Dynamic, and Stagnation Pressures
The Bernoulli equation states that the sum of the flow, kinetic, and potential
energies of a fluid particle along a streamline is constant. Therefore, the
kinetic and potential energies of the fluid can be converted to flow energy
(and vice versa) during flow, causing the pressure to change. This phenome-
non can be made more visible by multiplying the Bernoulli equation by the
density r,

(12–13)

Each term in this equation has pressure units, and thus each term represents
some kind of pressure:

• P is the static pressure (it does not incorporate any dynamic effects); it
represents the actual thermodynamic pressure of the fluid. This is the
same as the pressure used in thermodynamics and property tables.

• rV2/2 is the dynamic pressure; it represents the pressure rise when the
fluid in motion is brought to a stop isentropically.

P � r 
V 2

2
� rgz � constant 1along a streamline 2

�  
dP

r
� �  

0V

0t
 ds �

V˛

2

2
� gz � constant

P

r
� �  

V 2

R
 dn � gz � constant  1across streamlines 2

Stationary fluid

A

(a)

(b)

z z

B

C

D

PB – PA =  PD – PC

Flowing fluid

A B

PA>PB

FIGURE 12–6
Pressure decreases towards the center

of curvature when streamlines are
curved (a), but the variation of

pressure with elevation in steady,
incompressible flow along a straight

line (b) is the same as that in
stationary fluid.
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• rgz is the hydrostatic pressure term, which is not pressure in a real sense
since its value depends on the reference level selected; it accounts for the
elevation effects, i.e., fluid weight on pressure. (Be careful of the sign—
unlike hydrostatic pressure rgh which increases with fluid depth h, the
hydrostatic pressure term rgz decreases with fluid depth.)

The sum of the static, dynamic, and hydrostatic pressures is called the total
pressure. Therefore, the Bernoulli equation states that the total pressure
along a streamline is constant.

The sum of the static and dynamic pressures is called the stagnation
pressure, and it is expressed as

(12–14)

The stagnation pressure represents the pressure at a point where the fluid is
brought to a complete stop isentropically. The static, dynamic, and stagna-
tion pressures are shown in Fig. 12–7. When static and stagnation pressures
are measured at a specified location, the fluid velocity at that location is
calculated from

(12–15)

Equation 12–15 is useful in the measurement of flow velocity when a
combination of a static pressure tap and a Pitot tube is used, as illustrated in
Fig. 12–7. A static pressure tap is simply a small hole drilled into a wall
such that the plane of the hole is parallel to the flow direction. It measures
the static pressure. A Pitot tube is a small tube with its open end aligned
into the flow so as to sense the full impact pressure of the flowing fluid. It
measures the stagnation pressure. In situations in which the static and stagna-
tion pressure of a flowing liquid are greater than atmospheric pressure, a ver-
tical transparent tube called a piezometer tube (or simply a piezometer) can
be attached to the pressure tap and to the Pitot tube, as sketched in Fig. 12–8.
The liquid rises in the piezometer tube to a column height (head) that is pro-
portional to the pressure being measured. If the pressures to be measured are
below atmospheric, or if measuring pressures in gases, piezometer tubes do
not work. However, the static pressure tap and Pitot tube can still be used, but
they must be connected to some other kind of pressure measurement device
such as a U-tube manometer or a pressure transducer (Chap. 11). Sometimes
it is convenient to integrate static pressure holes on a Pitot probe. The result
is a Pitot-static probe (also called a Pitot-Darcy probe), as shown in 
Fig. 12–9 and discussed in more detail in Chap. 14. A Pitot-static probe con-
nected to a pressure transducer or a manometer measures the dynamic pres-
sure (and thus infers the fluid velocity) directly.

When the static pressure is measured by drilling a hole in the tube wall,
care must be exercised to ensure that the opening of the hole is flush with
the wall surface, with no extrusions before or after the hole (Fig. 12–9).
Otherwise the reading would incorporate some dynamic effects, and thus it
would be in error.

When a stationary body is immersed in a flowing stream, the fluid is
brought to a stop at the nose of the body (the stagnation point). The flow
streamline that extends from far upstream to the stagnation point is called

V � B
2 1Pstag � P 2

r

Pstag � P � r 
V 2

2
  1kPa 2

Stagnation pressure hole

Static pressure holes

FIGURE 12–8
Close-up of a Pitot-static probe,
showing the stagnation pressure 
hole and two of the five static
circumferential pressure holes.
Photo by Po-Ya Abel Chuang. Used by permission.
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FIGURE 12–9
Careless drilling of the static pressure
tap may result in an erroneous reading
of the static pressure head.
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FIGURE 12–7
The static, dynamic, and 
stagnation pressures measured using
piezometer tubes.
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the stagnation streamline (Fig. 12–10). For a two-dimensional flow in the
xy-plane, the stagnation point is actually a line parallel to the z-axis, and the
stagnation streamline is actually a surface that separates fluid that flows
over the body from fluid that flows under the body. In an incompressible
flow, the fluid decelerates nearly isentropically from its free-stream velocity
to zero at the stagnation point, and the pressure at the stagnation point is
thus the stagnation pressure.

Limitations on the Use of the Bernoulli Equation
The Bernoulli equation (Eq. 12–9) is one of the most frequently used and
misused equations in fluid mechanics. Its versatility, simplicity, and ease of
use make it a very valuable tool for use in analysis, but the same attributes
also make it very tempting to misuse. Therefore, it is important to under-
stand the restrictions on its applicability and observe the limitations on its
use, as explained here:

1. Steady flow The first limitation on the Bernoulli equation is that it is
applicable to steady flow. Therefore, it should not be used during the
transient start-up and shut-down periods, or during periods of change in
the flow conditions. Note that there is an unsteady form of the Bernoulli
equation (Eq. 12–12), discussion of which is beyond the scope of the
present text (see Panton, 1996).

2. Negligible viscous effects Every flow involves some friction, no
matter how small, and frictional effects may or may not be negligible.
The situation is complicated even more by the amount of error that can
be tolerated. In general, frictional effects are negligible for short flow
sections with large cross sections, especially at low flow velocities.
Frictional effects are usually significant in long and narrow flow
passages, in the wake region downstream of an object, and in diverging
flow sections such as diffusers because of the increased possibility of the
fluid separating from the walls in such geometries. Frictional effects are
also significant near solid surfaces, and thus the Bernoulli equation is
usually applicable along a streamline in the core region of the flow, but
not along a streamline close to the surface (Fig. 12–11).

A component that disturbs the streamlined structure of flow and thus
causes considerable mixing and backflow such as a sharp entrance of a
tube or a partially closed valve in a flow section can make the Bernoulli
equation inapplicable.

3. No shaft work The Bernoulli equation was derived from a force
balance on a particle moving along a streamline. Therefore, the
Bernoulli equation is not applicable in a flow section that involves a
pump, turbine, fan, or any other machine or impeller since such devices
disrupt the streamlines and carry out energy interactions with the fluid
particles. When the flow section considered involves any of these
devices, the energy equation should be used instead to account for the
shaft work input or output. However, the Bernoulli equation can still be
applied to a flow section prior to or past a machine (assuming, of course,
that the other restrictions on its use are satisfied). In such cases, the
Bernoulli constant changes from upstream to downstream of the device.

Stagnation streamline

FIGURE 12–10
Streaklines produced by colored fluid

introduced upstream of an airfoil;
since the flow is steady, the streaklines

are the same as streamlines and
pathlines. The stagnation streamline 

is marked.
Courtesy ONERA. Photograph by Werlé.
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FIGURE 12–11
Frictional effects, heat transfer, and

components that disturb the streamlined
structure of flow make the Bernoulli

equation invalid. It should not be used
in any of the flows shown here.
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4. Incompressible flow One of the approximations used in the derivation 
of the Bernoulli equation is that r � constant and thus the flow is
incompressible. This condition is satisfied by liquids and also by gases
at Mach numbers less than about 0.3 since compressibility effects and
thus density variations of gases are negligible at such relatively low
velocities. Note that there is a compressible form of the Bernoulli
equation (Eqs. 12–8 and 12–12).

5. Negligible heat transfer The density of a gas is inversely proportional
to temperature, and thus the Bernoulli equation should not be used for
flow sections that involve significant temperature change such as heating
or cooling sections.

6. Flow along a streamline Strictly speaking, the Bernoulli equation 
P/r � V2/2 � gz � C is applicable along a streamline, and the value of
the constant C is generally different for different streamlines. However,
when a region of the flow is irrotational and there is no vorticity in the
flow field, the value of the constant C remains the same for all
streamlines, and the Bernoulli equation becomes applicable across
streamlines as well (Fig. 12–12). Therefore, we do not need to be
concerned about the streamlines when the flow is irrotational, and we can
apply the Bernoulli equation between any two points in the irrotational
region of the flow.

We derived the Bernoulli equation by considering two-dimensional flow
in the xz-plane for simplicity, but the equation is valid for general three-
dimensional flow as well, as long as it is applied along the same streamline.
We should always keep in mind the approximations used in the derivation of
the Bernoulli equation and make sure that they are valid before applying it.

Hydraulic Grade Line (HGL) 
and Energy Grade Line (EGL)
It is often convenient to represent the level of mechanical energy graphically
using heights to facilitate visualization of the various terms of the Bernoulli
equation. This is done by dividing each term of the Bernoulli equation by g
to give

(12–16)

Each term in this equation has the dimension of length and represents some
kind of “head” of a flowing fluid as follows:

• P/rg is the pressure head; it represents the height of a fluid column that
produces the static pressure P.

• V2/2g is the velocity head; it represents the elevation needed for a fluid 
to reach the velocity V during frictionless free fall.

• z is the elevation head; it represents the potential energy of the fluid.

Also, H is the total head for the flow. Therefore, the Bernoulli equation is
expressed in terms of heads as: The sum of the pressure, velocity, and eleva-
tion heads along a streamline is constant during steady flow when com-
pressibility and frictional effects are negligible (Fig. 12–13).

P
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�

V 2

2g
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478
BERNOULLI AND ENERGY EQUATIONS

 –––– + + + z =  = H = constant = constant

PressurePressure
headhead

P
g  ––––

    2

2g

ElevationElevation
headhead

VelocityVelocity
headhead

Total headTotal head

V 
r

FIGURE 12–13
An alternative form of the Bernoulli
equation is expressed in terms of
heads as: The sum of the pressure,
velocity, and elevation heads is
constant along a streamline.
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FIGURE 12–12
When the flow is irrotational, the
Bernoulli equation becomes applicable
between any two points along the flow
(not just on the same streamline).
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FIGURE 12–14
The hydraulic grade line (HGL) and
the energy grade line (EGL) for free
discharge from a reservoir through a

horizontal pipe with a diffuser.

If a piezometer (which measures static pressure) is tapped into a pressur-
ized pipe, as shown in Fig. 12–14, the liquid would rise to a height of P/rg
above the pipe center. The hydraulic grade line (HGL) is obtained by doing
this at several locations along the pipe and drawing a curve through the liquid
levels in the piezometers. The vertical distance above the pipe center is a
measure of pressure within the pipe. Similarly, if a Pitot tube (measures static
� dynamic pressure) is tapped into a pipe, the liquid would rise to a height of
P/rg � V2/2g above the pipe center, or a distance of V2/2g above the HGL.
The energy grade line (EGL) is obtained by doing this at several locations
along the pipe and drawing a curve through the liquid levels in the Pitot tubes.

Noting that the fluid also has elevation head z (unless the reference level is
taken to be the centerline of the pipe), the HGL and EGL are defined as fol-
lows: The line that represents the sum of the static pressure and the elevation
heads, P/rg � z, is called the hydraulic grade line. The line that represents
the total head of the fluid, P/rg � V2/2g � z, is called the energy grade
line. The difference between the heights of EGL and HGL is equal to the
dynamic head, V2/2g. We note the following about the HGL and EGL:

• For stationary bodies such as reservoirs or lakes, the EGL and HGL
coincide with the free surface of the liquid. The elevation of the free
surface z in such cases represents both the EGL and the HGL since the
velocity is zero and the static (gage) pressure is zero.

• The EGL is always a distance V2/2g above the HGL. These two curves
approach each other as the velocity decreases, and they diverge as the
velocity increases. The height of the HGL decreases as the velocity
increases, and vice versa.

• In an idealized Bernoulli-type flow, EGL is horizontal and its height
remains constant. This would also be the case for HGL when the flow
velocity is constant (Fig. 12–15).

• For open-channel flow, the HGL coincides with the free surface of the
liquid, and the EGL is a distance V2/2g above the free surface.

• At a pipe exit, the pressure head is zero (atmospheric pressure) and thus
the HGL coincides with the pipe outlet (location 3 on Fig. 12–14).

• The mechanical energy loss due to frictional effects (conversion to
thermal energy) causes the EGL and HGL to slope downward in the
direction of flow. The slope is a measure of the head loss in the pipe.

Reference level
0

(Horizontal) EGL

z

HGL

P––  g

  2/2gV

r

FIGURE 12–15
In an idealized Bernoulli-type flow,

EGL is horizontal and its height
remains constant. But this is not 
the case for HGL when the flow 

velocity varies along the flow.
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A component that generates significant frictional effects such as a valve
causes a sudden drop in both EGL and HGL at that location.

• A steep jump occurs in EGL and HGL whenever mechanical energy is
added to the fluid (by a pump, for example). Likewise, a steep drop
occurs in EGL and HGL whenever mechanical energy is removed from
the fluid (by a turbine, for example), as shown in Fig. 12–16.

• The gage pressure of a fluid is zero at locations where the HGL intersects
the fluid. The pressure in a flow section that lies above the HGL is
negative, and the pressure in a section that lies below the HGL is positive
(Fig. 12–17). Therefore, an accurate drawing of a piping system overlaid
with the HGL can be used to determine the regions where the pressure in
the pipe is negative (below atmospheric pressure).

The last remark enables us to avoid situations in which the pressure drops
below the vapor pressure of the liquid (which may cause cavitation). Proper
consideration is necessary in the placement of a liquid pump to ensure that
the suction side pressure does not fall too low, especially at elevated temper-
atures where vapor pressure is higher than it is at low temperatures.

Now we examine Fig. 12–14 more closely. At point 0 (at the liquid surface),
EGL and HGL are even with the liquid surface since there is no flow there.
HGL decreases rapidly as the liquid accelerates into the pipe; however, EGL
decreases very slowly through the well-rounded pipe inlet. EGL declines con-
tinually along the flow direction due to friction and other irreversible losses in
the flow. EGL cannot increase in the flow direction unless energy is supplied
to the fluid. HGL can rise or fall in the flow direction, but can never exceed
EGL. HGL rises in the diffuser section as the velocity decreases, and the static
pressure recovers somewhat; the total pressure does not recover, however, and
EGL decreases through the diffuser. The difference between EGL and HGL is
V2

1/2g at point 1, and V2
2/2g at point 2. Since V1 � V2, the difference between

the two grade lines is larger at point 1 than at point 2. The downward slope of
both grade lines is larger for the smaller diameter section of pipe since the fric-
tional head loss is greater. Finally, HGL decays to the liquid surface at the out-
let since the pressure there is atmospheric. However, EGL is still higher than
HGL by the amount V 2

2/2g since V3 � V2 at the outlet.

Applications of the Bernoulli Equation
So far, we have discussed the fundamental aspects of the Bernoulli equa-
tion. Now, we demonstrate its use in a wide range of applications through
examples.

EXAMPLE 12–1 Spraying Water into the Air

Water is flowing from a garden hose (Fig. 12–18). A child places his thumb to
cover most of the hose outlet, causing a thin jet of high-speed water to emerge.
The pressure in the hose just upstream of his thumb is 400 kPa. If the hose is
held upward, what is the maximum height that the jet could achieve?

Solution Water from a hose attached to the water main is sprayed into the
air. The maximum height the water jet can rise is to be determined.
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FIGURE 12–16
A steep jump occurs in EGL and HGL
whenever mechanical energy is added
to the fluid by a pump, and a steep drop
occurs whenever mechanical energy is
removed from the fluid by a turbine.
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FIGURE 12–17
The gage pressure of a fluid is zero at
locations where the HGL intersects
the fluid, and the gage pressure is
negative (vacuum) in a flow section
that lies above the HGL.
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Assumptions 1 The flow exiting into the air is steady, incompressible, and
irrotational (so that the Bernoulli equation is applicable). 2 The surface ten-
sion effects are negligible. 3 The friction between the water and air is negligi-
ble. 4 The irreversibilities that occur at the outlet of the hose due to abrupt
contraction are not taken into account.
Properties We take the density of water to be 1000 kg/m3.
Analysis This problem involves the conversion of flow, kinetic, and potential
energies to each other without involving any pumps, turbines, and wasteful
components with large frictional losses, and thus it is suitable for the use of
the Bernoulli equation. The water height will be maximum under the stated
assumptions. The velocity inside the hose is relatively low (V1

2 << Vj
2, and

thus V1 � 0 compared to Vj) and we take the elevation just below the hose
outlet as the reference level (z1 � 0). At the top of the water trajectory V2 �
0, and atmospheric pressure pertains. Then the Bernoulli equation along a
streamline from 1 to 2 simplifies to

Solving for z2 and substituting,

Therefore, the water jet can rise as high as 40.8 m into the sky in this case.
Discussion The result obtained by the Bernoulli equation represents the
upper limit and should be interpreted accordingly. It tells us that the water
cannot possibly rise more than 40.8 m, and, in all likelihood, the rise will be
much less than 40.8 m due to irreversible losses that we neglected.

EXAMPLE 12–2 Water Discharge from a Large Tank

A large tank open to the atmosphere is filled with water to a height of 5 m
from the outlet tap (Fig. 12–19). A tap near the bottom of the tank is now
opened, and water flows out from the smooth and rounded outlet. Determine
the maximum water velocity at the outlet.

Solution A tap near the bottom of a tank is opened. The maximum exit
velocity of water from the tank is to be determined.
Assumptions 1 The flow is incompressible and irrotational (except very close
to the walls). 2 The water drains slowly enough that the flow can be approxi-
mated as steady (actually quasi-steady when the tank begins to drain). 
3 Irreversible losses in the tap region are neglected.
Analysis This problem involves the conversion of flow, kinetic, and potential
energies to each other without involving any pumps, turbines, and wasteful
components with large frictional losses, and thus it is suitable for the use of
the Bernoulli equation. We take point 1 to be at the free surface of water so
that P1 � Patm (open to the atmosphere), V1

2 << V2
2 and thus V1 � 0 compared

to V2 (the tank is very large relative to the outlet), z1 � 5 m and z2 � 0 (we
take the reference level at the center of the outlet). Also, P2 � Patm (water dis-
charges into the atmosphere). For flow along a streamline from 1 to 2, the
Bernoulli equation simplifies to

 � 40.8 m 

z2 �
P1 � Patm

rg �
P1, gage

rg �
400 kPa

11000 kg/m3 2 19.81 m/s2 2  a
1000 N/m2

1 kPa
b a 1 kg#m/s2

1 N
b

P1

rg �
V2

1

2g
  � z1   �

P2

rg �
V˛

2
2

2g
  � z2   S    

P1

rg �
Patm

rg � z2
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Solving for V2 and substituting,

The relation V � is called the Torricelli equation.
Therefore, the water leaves the tank with an initial maximum velocity of

9.9 m/s. This is the same velocity that would manifest if a solid were dropped
a distance of 5 m in the absence of air friction drag. (What would the velocity
be if the tap were at the bottom of the tank instead of on the side?)
Discussion If the orifice were sharp-edged instead of rounded, then the flow
would be disturbed, and the average exit velocity would be less than 
9.9 m/s. Care must be exercised when attempting to apply the Bernoulli equa-
tion to situations where abrupt expansions or contractions occur since the
friction and flow disturbance in such cases may not be negligible. From con-
version of mass, (V1/V2)2 � (D2/D1)4. So, for example, if D2/D1 � 0.1, then
(V1/V2)2 � 0.0001, and our approximation that V1

2 << V2
2 is justified.

EXAMPLE 12–3 Siphoning Out Gasoline from a Fuel Tank

During a trip to the beach (Patm � 1 atm � 101.3 kPa), a car runs out of
gasoline, and it becomes necessary to siphon gas out of the car of a Good
Samaritan (Fig. 12–20). The siphon is a small-diameter hose, and to start
the siphon it is necessary to insert one siphon end in the full gas tank, fill
the hose with gasoline via suction, and then place the other end in a gas can
below the level of the gas tank. The difference in pressure between point 1
(at the free surface of the gasoline in the tank) and point 2 (at the outlet of
the tube) causes the liquid to flow from the higher to the lower elevation.
Point 2 is located 0.75 m below point 1 in this case, and point 3 is located
2 m above point 1. The siphon diameter is 5 mm, and frictional losses in
the siphon are to be disregarded. Determine (a) the minimum time to with-
draw 4 L of gasoline from the tank to the can and (b) the pressure at point 3.
The density of gasoline is 750 kg/m3.

Solution Gasoline is to be siphoned from a tank. The minimum time it
takes to withdraw 4 L of gasoline and the pressure at the highest point in
the system are to be determined.
Assumptions 1 The flow is steady and incompressible. 2 Even though the
Bernoulli equation is not valid through the pipe because of frictional losses,
we employ the Bernoulli equation anyway in order to obtain a best-case esti-
mate. 3 The change in the gasoline surface level inside the tank is negligible
compared to elevations z1 and z2 during the siphoning period.
Properties The density of gasoline is given to be 750 kg/m3.
Analysis (a) We take point 1 to be at the free surface of gasoline in the
tank so that P1 � Patm (open to the atmosphere), V1 � 0 (the tank is large
relative to the tube diameter), and z2 � 0 (point 2 is taken as the reference
level). Also, P2 � Patm (gasoline discharges into the atmosphere). Then the
Bernoulli equation simplifies to

P1

rg
�

V 2
1

2g
 � z1 �

P2

rg
�

V 2
2

2g
� z2  S    z1 �

V 2
2

2g

22gz

V2 � 22gz1 � 22 19.81 m>s2 2 15 m 2 � 9.9 m>s

P1

rg
�

V 2
1

2g
 � z1 �

P2

rg
�

V 2
2

2g
� z2  S    z1 �

V 2
2

2g
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Solving for V2 and substituting,

The cross-sectional area of the tube and the flow rate of gasoline are

Then the time needed to siphon 4 L of gasoline becomes

(b) The pressure at point 3 is determined by writing the Bernoulli equation
along a streamline between points 3 and 2. Noting that V2 � V3 (conserva-
tion of mass), z2 � 0, and P2 � Patm,

Solving for P3 and substituting,

Discussion The siphoning time is determined by neglecting frictional
effects, and thus this is the minimum time required. In reality, the time will
be longer than 53.1 s because of friction between the gasoline and the tube
surface, along with other irreversible losses, as discussed in Chap. 14. Also,
the pressure at point 3 is below the atmospheric pressure. If the elevation
difference between points 1 and 3 is too high, the pressure at point 3 may
drop below the vapor pressure of gasoline at the gasoline temperature, and
some gasoline may evaporate (cavitate). The vapor then may form a pocket
at the top and halt the flow of gasoline.

EXAMPLE 12–4 Velocity Measurement by a Pitot Tube

A piezometer and a Pitot tube are tapped into a horizontal water pipe, as
shown in Fig. 12–21, to measure static and stagnation (static � dynamic)
pressures. For the indicated water column heights, determine the velocity at
the center of the pipe.

Solution The static and stagnation pressures in a horizontal pipe are mea-
sured. The velocity at the center of the pipe is to be determined.
Assumptions 1 The flow is steady and incompressible. 2 Points 1 and 2 are
close enough together that the irreversible energy loss between these two
points is negligible, and thus we can use the Bernoulli equation.
Analysis We take points 1 and 2 along the streamline at the centerline 
of the pipe, with point 1 directly under the piezometer and point 2 at the tip

 � 81.1 kPa 

 � 101.3 kPa� 1750 kg>m3 2 19.81 m>s2 2 12.75 m2a 1 N
1 kg#m>s2

b a 1 kPa
1000 N>m2

b  

 P3 � Patm � rgz3 

P2

rg
�

V 2
2

2g
� z2 

  
�

P3

rg
�

V 2
3

2g
� z3  S   

Patm

rg
�

P3

rg
� z3

¢t �
V
V
# �

4 L

0.0753 L>s � 53.1 s

#
V � V2 A � 13.84 m>s 2 11.96 � 10�5 m2 2 � 7.53 � 10�5 m3>s � 0.0753 L>s

 A � pD2>4 � p 15 � 10�3 m 2 2>4 � 1.96 � 10�5 m2 

V2 � 22gz1 � 22 19.81 m>s2 2 10.75 m 2 � 3.84 m>s
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of the Pitot tube. This is a steady flow with straight and parallel streamlines,
and the gage pressures at points 1 and 2 can be expressed as

Noting that z1 � z2, and point 2 is a stagnation point and thus 
V2 � 0, the application of the Bernoulli equation between points 1 and 2
gives

Substituting the P1 and P2 expressions gives

Solving for V1 and substituting,

Discussion Note that to determine the flow velocity, all we need is to mea-
sure the height of the excess fluid column in the Pitot tube compared to that
in the piezometer tube.

EXAMPLE 12–5 The Rise of the Ocean Due to a Hurricane

A hurricane is a tropical storm formed over the ocean by low atmospheric
pressures. As a hurricane approaches land, inordinate ocean swells (very
high tides) accompany the hurricane. A Class-5 hurricane features winds in
excess of 155 mph, although the wind velocity at the center “eye” is very
low.

Figure 12–22 depicts a hurricane hovering over the ocean swell below.
The atmospheric pressure 200 mi from the eye is 30.0 in Hg (at point 1,
generally normal for the ocean) and the winds are calm. The atmospheric
pressure at the eye of the storm is 22.0 in Hg. Estimate the ocean swell at
(a) the eye of the hurricane at point 3 and (b) point 2, where the wind veloc-
ity is 155 mph. Take the density of seawater and mercury to be 64 lbm/ft3

and 848 lbm/ft3, respectively, and the density of air at normal sea-level tem-
perature and pressure to be 0.076 lbm/ft3.

Solution A hurricane is moving over the ocean. The amount of ocean swell
at the eye and at active regions of the hurricane are to be determined.
Assumptions 1 The airflow within the hurricane is steady, incompressible,
and irrotational (so that the Bernoulli equation is applicable). (This is certainly
a very questionable assumption for a highly turbulent flow, but it is justified in
the discussion.) 2 The effect of water sucked into the air is negligible.
Properties The densities of air at normal conditions, seawater, and mercury
are given to be 0.076 lbm/ft3, 64.0 lbm/ft3, and 848 lbm/ft3, respectively.
Analysis (a) Reduced atmospheric pressure over the water causes the water
to rise. Thus, decreased pressure at point 2 relative to point 1 causes the
ocean water to rise at point 2. The same is true at point 3, where the storm air

V1 � 22gh3 � 22 19.81 m>s2 2 10.12 m 2 � 1.53 m>s

V 2
1

2g
�

P2 � P1

rg �
rg 1h1 � h2 � h3 2 � rg 1h1 � h2 2

rg � h3

P1

rg
�

V 2
1

2g
� z1 �

P2

rg
�

V 2
2

2g
  � z2  S   

V 2
1

2g
�

P2 � P1

rg

 P2 � rg 1h1 � h2 � h3 2
 P1 � rg 1h1 � h2 2  
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velocity is negligible. The pressure difference given in terms of the mercury
column height is expressed in terms of the seawater column height by

Then the pressure difference between points 1 and 3 in terms of the seawa-
ter column height becomes

which is equivalent to the storm surge at the eye of the hurricane (Fig.
12–23) since the wind velocity there is negligible and there are no dynamic
effects.

(b) To determine the additional rise of ocean water at point 2 due to the high
winds at that point, we write the Bernoulli equation between points A and B,
which are on top of points 2 and 3, respectively. Noting that VB � 0 (the eye
region of the hurricane is relatively calm) and zA � zB (both points are on the
same horizontal line), the Bernoulli equation simplifies to

Substituting,

where r is the density of air in the hurricane. Noting that the density of an
ideal gas at constant temperature is proportional to absolute pressure and
the density of air at the normal atmospheric pressure of 14.7 psia � 30 in
Hg is 0.076 lbm/ft3, the density of air in the hurricane is

Using the relation developed above in part (a), the seawater column height
equivalent to 803 ft of air column height is determined to be

Therefore, the pressure at point 2 is 0.70 ft seawater column lower than the
pressure at point 3 due to the high wind velocities, causing the ocean to rise
an additional 0.70 ft. Then the total storm surge at point 2 becomes

h2 � h3 � hdynamic � 8.83 � 0.70 � 9.53 ft

Discussion This problem involves highly turbulent flow and the intense
breakdown of the streamlines, and thus the applicability of the Bernoulli
equation in part (b) is questionable. Furthermore, the flow in the eye of the
storm is not irrotational, and the Bernoulli equation constant changes across

hdynamic �
rair

rsw
 hair � a 0.056 lbm>ft3

64 lbm>ft3
b 1803 ft 2 � 0.70 ft

rair �
Pair

Patm air
 ratm air � a 22 in Hg

30 in Hg
b 10.076 lbm>ft3 2 � 0.056 lbm>ft3

PB � PA

rg �
V 2

A

2g
�
1155 mph 2 2

2 132.2 ft>s2 2  a
1.4667 ft>s

1 mph
b 2

� 803 ft

PA

rg
�

V 2
A

2g
� zA �

PB

rg
�

V 2
B

2g
   � zB  S   

PB � PA

rg
�

V 2
A

2g

h3 �
rHg

rsw
 hHg � a 848 lbm>ft3

64.0 lbm>ft3
b 3 130 � 22 2  in Hg 4 a 1 ft

12 in
b � 8.83 ft

¢P � 1rgh 2Hg � 1rgh 2 sw S  hsw �
rHg

rsw
 hHg
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streamlines. The Bernoulli analysis can be thought of as the limiting, ideal
case, and shows that the rise of seawater due to high-velocity winds cannot
be more than 0.70 ft.

The wind power of hurricanes is not the only cause of damage to coastal
areas. Ocean flooding and erosion from excessive tides is just as serious, as
are high waves generated by the storm turbulence and energy.

EXAMPLE 12–6 Bernoulli Equation for Compressible Flow

Derive the Bernoulli equation when the compressibility effects are not negli-
gible for an ideal gas undergoing (a) an isothermal process and (b) an isen-
tropic process.

Solution The Bernoulli equation for compressible flow is to be obtained for
an ideal gas for isothermal and isentropic processes.
Assumptions 1 The flow is steady and frictional effects are negligible. 2 The
fluid is an ideal gas, so the relation P � rRT is applicable. 3 The specific
heats are constant so that P/rk � constant during an isentropic process.
Analysis (a) When the compressibility effects are significant and the flow
cannot be assumed to be incompressible, the Bernoulli equation is given by
Eq. 12–8 as

(1)

The compressibility effects can be properly accounted for by performing the
integration �dP/r in Eq. 1. But this requires a relation between P and r for
the process. For the isothermal expansion or compression of an ideal gas,
the integral in Eq. 1 is performed easily by noting that T � constant and
substituting r � P/RT,

Substituting into Eq. 1 gives the desired relation,

Isothermal process: (2)

(b) A more practical case of compressible flow is the isentropic flow of ideal
gases through equipment that involves high-speed fluid flow such as nozzles,
diffusers, and the passages between turbine blades (Fig. 12–24). Isentropic
(i.e., reversible and adiabatic) flow is closely approximated by these devices,
and it is characterized by the relation P/rk � C � constant, where k is the spe-
cific heat ratio of the gas. Solving for r from P/rk � C gives r � C �1/kP1/k.
Performing the integration,

(3)

Substituting, the Bernoulli equation for steady, isentropic, compressible flow
of an ideal gas becomes

Isentropic flow: (4a)a k
k�1 bP

R
�

V2

2 � gz � constant

�  
dP
r

� �  C1>kP�1>k dP � C1>k P�1>k�1

�1>k � 1
�

P1>k
r

 
P�1>k�1

�1>k � 1
� a k

k � 1
b P
r

RT ln P �
V 2

2
� gz � constant

�  
dP
r

� �  
dP

P>RT
� RT ln P

�  
dP
r

�
V 2

2
� gz � constant    1along a streamline 2
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FIGURE 12–24
Compressible flow of a gas through
turbine blades is often modeled as
isentropic, and the compressible form
of the Bernoulli equation is a
reasonable approximation.
© Corbis RF.
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or

(4b)

A common practical situation involves the acceleration of a gas from rest
(stagnation conditions at state 1) with negligible change in elevation. In
that case we have z1 � z2 and V1 � 0. Noting that r � P/RT for ideal
gases, P/rk � constant for isentropic flow, and the Mach number is defined
as Ma � V/c where is the local speed of sound for ideal gases,
Eq. 4b simplifies to

(4c)

where state 1 is the stagnation state and state 2 is any state along the flow.
Discussion It can be shown that the results obtained using the compressible
and incompressible equations deviate no more than 2 percent when the Mach
number is less than 0.3. Therefore, the flow of an ideal gas can be considered
to be incompressible when Ma 	 0.3. For atmospheric air at normal condi-
tions, this corresponds to a flow speed of about 100 m/s or 360 km/h.

12–2 ■ GENERAL ENERGY EQUATION
One of the most fundamental laws in nature is the first law of thermody-
namics, also known as the conservation of energy principle, which pro-
vides a sound basis for studying the relationships among the various forms
of energy and energy interactions. It states that energy can be neither cre-
ated nor destroyed during a process; it can only change forms. Therefore,
every bit of energy must be accounted for during a process.

A rock falling off a cliff, for example, picks up speed as a result of its
potential energy being converted to kinetic energy (Fig. 12–25). Experimen-
tal data show that the decrease in potential energy equals the increase in
kinetic energy when the air resistance is negligible, thus confirming the con-
servation of energy principle. The conservation of energy principle also
forms the backbone of the diet industry: a person who has a greater energy
input (food) than energy output (exercise) will gain weight (store energy in
the form of fat), and a person who has a smaller energy input than output
will lose weight. The change in the energy content of a system is equal to
the difference between the energy input and the energy output, and the 
conservation of energy principle for any system can be expressed simply as
Ein � Eout � 
E.

The transfer of any quantity (such as mass, momentum, and energy) is
recognized at the boundary as the quantity crosses the boundary. A quantity
is said to enter a system (or control volume) if it crosses the boundary from
the outside to the inside, and to exit the system if it moves in the reverse
direction. A quantity that moves from one location to another within a sys-
tem is not considered as a transferred quantity in an analysis since it does
not enter or exit the system. Therefore, it is important to specify the system
and thus clearly identify its boundaries before an engineering analysis is
performed.

P1

P2
� c1 � a k � 1

2
b  Ma 2

2 d
k >1k�12

c � 1kRT

a k
k � 1

b P1

r1
�

V 2
1

2
� gz1 � a k

k � 1
b P2

r2
�

V 2
2

2
� gz2
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where we used the definition of enthalpy h � u � Pv � u � P/r. The last
two equations are fairly general expressions of conservation of energy, but
their use is still limited to fixed control volumes, uniform flow at inlets and
outlets, and negligible work due to viscous forces and other effects. Also,
the subscript “net in” stands for “net input,” and thus any heat or work
transfer is positive if to the system and negative if from the system.

12–3 ■ ENERGY ANALYSIS OF STEADY FLOWS 
For steady flows, the time rate of change of the energy content of the con-
trol volume is zero, and the energy equation can be expressed as

(12–17)

It states that during steady flow the net rate of energy transfer to a control
volume by heat and work transfers is equal to the difference between the
rates of outgoing and incoming energy flows by mass flow.

Many practical problems involve just one inlet and one outlet (Fig. 12–26).
The mass flow rate for such single-stream devices is the same at the inlet
and outlet, and Eq. 12–17 reduces to 

(12–18)

where subscripts 1 and 2 refer to the inlet and outlet, respectively. The
steady-flow energy equation on a unit-mass basis is obtained by dividing
Eq. 12–18 by the mass flow rate m

.
,

(12–19)

where qnet in � Q
.
net in/m

.
is the net heat transfer to the fluid per unit mass and

wshaft, net in � W
.
shaft, net in/m

.
is the net shaft work input to the fluid per unit

mass. Using the definition of enthalpy h � u � P/r and rearranging, the
steady-flow energy equation can also be expressed as

(12–20)

where u is the internal energy, P/r is the flow energy, V2/2 is the kinetic
energy, and gz is the potential energy of the fluid, all per unit mass. These
relations are valid for both compressible and incompressible flows.

The left side of Eq. 12–20 represents the mechanical energy input, while
the first three terms on the right side represent the mechanical energy out-
put. If the flow is ideal with no irreversibilities such as friction, the total
mechanical energy must be conserved, and the term in parentheses (u2 � u1
� qnet in) must equal zero. That is,

Ideal flow (no mechanical energy loss): (12–21)

Any increase in u2 � u1 above qnet in is due to the irreversible conversion of
mechanical energy to thermal energy, and thus u2 � u1 � qnet in represents
the mechanical energy loss per unit mass (Fig. 12–27). That is,

Real flow (with mechanical energy loss): (12–22)emech, loss � u2 � u1 � qnet in

qnet in � u2 � u1

wshaft, net in �
P1

r1
�

V2
1

2
� gz1 �

P2

r2
�

V2
2

2
� gz2 � 1u2 � u1 � qnet in 2

qnet in � wshaft, net in � h2 � h1 �
V 2

2 � V 2
1

2
� g 1z2 � z1 2

Q
#
net in � W

#
shaft, net in � m

# ah2 � h1 �
V 2

2 � V 2
1

2
� g 1z2 � z1 2 b

Q
#
net in � W

#
shaft, net in �a

out
m
# ah �

V 2

2
� gz b �a

in
m
# ah �

V 2

2
� gz b
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+ + h1

Qnet in + Wshaft, net in

gz12
1m⋅

⋅ ⋅

2V

In

Out

Fixed
control
volume

2

1

+ + h2 gz22
2m⋅
2V

Q Q

Q Q

FIGURE 12–26
A control volume with only one inlet
and one outlet and energy interactions.

15.2°C

15.0°C

Water

0.7 kg/s

Δu = 0.84 kJ/kg
ΔT = 0.2°C

2 kW
  pump = 0.70h

FIGURE 12–27
The lost mechanical energy in a fluid
flow system results in an increase in
the internal energy of the fluid and
thus in a rise of fluid temperature.
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For single-phase fluids (a gas or a liquid), u2 � u1 � cv(T2 � T1) where cv
is the constant-volume specific heat.

The steady-flow energy equation on a unit-mass basis can be written con-
veniently as a mechanical energy balance,

(12–23)

or

(12–24)

Noting that wshaft, net in � wpump � wturbine, the mechanical energy balance can
be written more explicitly as

(12–25)

where wpump is the mechanical work input (due to the presence of a pump,
fan, compressor, etc.) and wturbine is the mechanical work output (due to a tur-
bine). When the flow is incompressible, either absolute or gage pressure can
be used for P since Patm/r would appear on both sides and would cancel out.

Multiplying Eq. 12–25 by the mass flow rate m
.

gives

(12–26)

where W
.
pump is the shaft power input through the pump’s shaft, W

.
turbine is the

shaft power output through the turbine’s shaft, and E
.
mech, loss is the total

mechanical power loss, which consists of pump and turbine losses as well as
the frictional losses in the piping network. That is,

E
.
mech, loss � E

.
mech loss, pump � E

.
mech loss, turbine � E

.
mech loss, piping

By convention, irreversible pump and turbine losses are treated separately
from irreversible losses due to other components of the piping system 
(Fig. 12–28). Thus, the energy equation is expressed in its most common form
in terms of heads by dividing each term in Eq. 12–26 by m

.
g. The result is

(12–27)

where 

• is the useful head delivered 

to the fluid by the pump. Because of irreversible losses in the pump,
hpump, u is less than W

.
pump/m

.
g by the factor hpump. 

• is the extracted head removed

from the fluid by the turbine. Because of irreversible losses in the 
turbine, hturbine, e is greater than W

.
turbine/m

.
g by the factor hturbine. 

• is the irreversible head loss between 

1 and 2 due to all components of the piping system other than the pump
or turbine.

hL �
emech loss, piping

g
�

E
#
mech loss, piping

m
#
g

hturbine, e �
wturbine, e

g
�

W
#

turbine, e

m
#
g

�
W
#

turbine

hturbinem
#
g

hpump, u �
wpump, u

g
�

W
#

pump, u

m
#
g

�
hpumpW

#
pump

m
#
g

P1

r1g
�

V 2
1

2g
� z1 � hpump, u �

P2

r2g
�

V 2
2

2g
� z2 � hturbine, e � hL

m
# aP1

r1
�

V 2
1

2
� gz1b � W

#
pump � m

# aP2

r2
�

V 2
2

2
� gz2b � W

#
turbine �E

#
mech, loss

P1

r1
�

V 2
1

2
� gz1 � wpump �

P2

r2
�

V 2
2

2
� gz2 � wturbine � emech, loss

wshaft, net in �
P1

r1
�

V 2
1

2
� gz1 �

P2

r2
�

V 2
2

2
� gz2 � emech, loss

emech, in � emech, out � emech, loss
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FIGURE 12–28
A typical power plant has numerous

pipes, elbows, valves, pumps, and
turbines, all of which have irreversible

losses.
© PunchStock RF.
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Note that the head loss hL represents the frictional losses associated with
fluid flow in piping, and it does not include the losses that occur within the
pump or turbine due to the inefficiencies of these devices—these losses are
taken into account by hpump and hturbine. Equation 12–27 is illustrated
schematically in Fig. 12–29.

The pump head is zero if the piping system does not involve a pump, a
fan, or a compressor, and the turbine head is zero if the system does not
involve a turbine.

Special Case: Incompressible Flow with No
Mechanical Work Devices and Negligible Friction
When piping losses are negligible, there is negligible dissipation of mechan-
ical energy into thermal energy, and thus hL � emech loss, piping /g ≅ 0. Also,
hpump, u � hturbine, e � 0 when there are no mechanical work devices such as
fans, pumps, or turbines.  Then Eq. 12–27 reduces to

(12–28)

which is the Bernoulli equation derived earlier using Newton’s second law
of motion. Thus, the Bernoulli equation can be thought of as a degenerate
form of the energy equation.

Kinetic Energy Correction Factor, A
The average flow velocity Vavg was defined such that the relation rVavgA gives
the actual mass flow rate. Therefore, there is no such thing as a correction fac-
tor for mass flow rate. However, as Gaspard Coriolis (1792–1843) showed,
the kinetic energy of a fluid stream obtained from V2/2 is not the same as the
actual kinetic energy of the fluid stream since the square of a sum is not equal
to the sum of the squares of its components (Fig. 12–30). This error can be
corrected by replacing the kinetic energy terms V2/2 in the energy equation by
aV avg

2 /2, where a is the kinetic energy correction factor. By using equations
for the variation of velocity with the radial distance, it can be shown that the
correction factor is 2.0 for fully developed laminar pipe flow, and it ranges
between 1.04 and 1.11 for fully developed turbulent flow in a round pipe.

P1

rg
�

V 2
1

2g
� z1 �

P2

rg
�

V 2
2

2g
� z2  or  P

rg
�

V 2

2g
� z � constant
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Control volume

Emech loss, pump
·

Wpump, u
·

Wpump
·

hpump, u

hturbine, e

Emech fluid, out
·

Wturbine, e
·

Wturbine
·

Emech loss,
 turbine

·

hL

P1 
z1 

rg
+ +

2g rg

P2 
z2 + +

 

2g

Emech loss, piping
·

2V2 1V2 
Emech fluid, in
·

FIGURE 12–29
Mechanical energy flow chart for 
a fluid flow system that involves 
a pump and a turbine. Vertical
dimensions show each energy term
expressed as an equivalent column
height of fluid, i.e., head,
corresponding to each term 
of Eq. 12–27.

KEact =  ��kedm = ��A

 ��A

[V(r)]
2 

[rV(r) dA]
· ·

·

m = rVavg A,         r = constant

V(r) A

·

––1
2

rAV3––1
2

KEavg = avg avg=mV2·
––1
2

KEact
a = =

3 

dA

·

KEavg
· ––––––––

V(r)
Vavg
––––1

A

r ��A[V(r)]
3
 dA= ––1

2

a b

FIGURE 12–30
The determination of the kinetic
energy correction factor using the
actual velocity distribution V(r) and
the average velocity Vavg at a cross
section.
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The kinetic energy correction factors are often ignored (i.e., a is set equal
to 1) in an elementary analysis since (1) most flows encountered in practice
are turbulent, for which the correction factor is near unity, and (2) the
kinetic energy terms are often small relative to the other terms in the energy
equation, and multiplying them by a factor less than 2.0 does not make
much difference. When the velocity and thus the kinetic energy are high, the
flow turns turbulent, and a unity correction factor is more appropriate. How-
ever, you should keep in mind that you may encounter some situations for
which these factors are significant, especially when the flow is laminar.
Therefore, we recommend that you always include the kinetic energy cor-
rection factor when analyzing fluid flow problems. When the kinetic energy
correction factors are included, the energy equations for steady incompress-
ible flow (Eqs. 12–26 and 12–27) become

(12–29)

(12–30)

If the flow at an inlet or outlet is fully developed turbulent pipe flow, we
recommend using a � 1.05 as a reasonable estimate of the correction fac-
tor. This leads to a more conservative estimate of head loss, and it does not
take much additional effort to include a in the equations.

EXAMPLE 12–7 Pumping Power and Frictional Heating 
in a Pump

The pump of a water distribution system is powered by a 15-kW electric
motor whose efficiency is 90 percent (Fig. 12–31). The water flow rate
through the pump is 50 L/s. The diameters of the inlet and outlet pipes are
the same, and the elevation difference across the pump is negligible. If the
absolute pressures at the inlet and outlet of the pump are measured to be
100 kPa and 300 kPa, respectively, determine (a) the mechanical efficiency
of the pump and (b) the temperature rise of water as it flows through the
pump due to mechanical inefficiencies.

Solution The pressures across a pump are measured. The mechanical effi-
ciency of the pump and the temperature rise of water are to be determined.
Assumptions 1 The flow is steady and incompressible. 2 The pump is driven
by an external motor so that the heat generated by the motor is dissipated to
the atmosphere. 3 The elevation difference between the inlet and outlet of
the pump is negligible, z1 � z2. 4 The inlet and outlet diameters are the
same and thus the average inlet and outlet velocities are equal, V1 � V2. 
5 The kinetic energy correction factors are equal, a1 � a2.
Properties We take the density of water to be 1 kg/L � 1000 kg/m3 and its
specific heat to be 4.18 kJ/kg · °C.
Analysis (a) The mass flow rate of water through the pump is

The motor draws 15 kW of power and is 90 percent efficient. Thus the
mechanical (shaft) power it delivers to the pump is

W
#

pump, shaft � hmotorW
#

electric � 10.90 2 115 kW 2 � 13.5 kW

m
#

� rV
#

� 11 kg>L 2 150 L>s 2 � 50 kg>s

P1

rg
� a1 

V1
2

2g
� z1 � hpump, u �

P2

rg
� a2 

V2
2

2g
� z2 � hturbine, e � hL

m
# aP1

r
� a1 

V1
2

2
� gz1 b � W

#
pump � m

# aP2

r
� a2 

V2
2

2
� gz2b� W

#
turbine � E

#
mech, loss
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Wpump
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FIGURE 12–31
Schematic for Example 12–7.
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To determine the mechanical efficiency of the pump, we need to know the
increase in the mechanical energy of the fluid as it flows through the pump,
which is

Simplifying it for this case and substituting the given values,

Then the mechanical efficiency of the pump becomes

(b) Of the 13.5-kW mechanical power supplied by the pump, only 10.0 kW
is imparted to the fluid as mechanical energy. The remaining 3.5 kW is con-
verted to thermal energy due to frictional effects, and this “lost” mechanical
energy manifests itself as a heating effect in the fluid,

The temperature rise of water due to this mechanical inefficiency is deter-
mined from the thermal energy balance, E

.
mech, loss � m

.
(u2 � u1) � m

.
c
T.

Solving for 
T,

Therefore, the water experiences a temperature rise of 0.017°C which is very
small, due to mechanical inefficiency, as it flows through the pump.
Discussion In an actual application, the temperature rise of water would
probably be less since part of the heat generated would be transferred to 
the casing of the pump and from the casing to the surrounding air. If the
entire pump and motor were submerged in water, then the 1.5 kW dissipated
due to motor inefficiency would also be transferred to the surrounding water
as heat.

EXAMPLE 12–8 Hydroelectric Power Generation from a Dam

In a hydroelectric power plant, 100 m3/s of water flows from an elevation of
120 m to a turbine, where electric power is generated (Fig. 12–32). The total
irreversible head loss in the piping system from point 1 to point 2 (excluding
the turbine unit) is determined to be 35 m. If the overall efficiency of the
turbine–generator is 80 percent, estimate the electric power output.

Solution The available head, flow rate, head loss, and efficiency of a hydro-
electric turbine are given. The electric power output is to be determined.
Assumptions 1 The flow is steady and incompressible. 2 Water levels at the
reservoir and the discharge site remain constant.
Properties We take the density of water to be 1000 kg/m3.
Analysis The mass flow rate of water through the turbine is

m
#

� rV
#

� 11000 kg>m3 2 1100 m3>s 2 � 105 kg>s

¢T �
E
#
mech, loss

m
#
c

�
3.5 kW

150 kg>s 2 14.18 kJ> kg #°C 2 � 0.017°C

E
#

mech, loss � W
#

pump, shaft � ¢E
#

mech, fluid � 13.5 � 10.0 � 3.5 kW

hpump �
W
#

pump, u

W
#

pump, shaft

�
¢E

#
mech, fluid

W
#

pump, shaft

�
10.0 kW

13.5 kW
� 0.741  or  74.1%

¢E
#

mech, fluid � m
# a P2 � P1

r
b � 150 kg>s 2 a 1300 �100 2  kPa

1000 kg>m3 b a 1 kJ
1 kP #m3b � 10.0 kW

¢E
#

mech, fluid � E
#

mech, out � E
#

mech, in � m
# a P2

r
� a2 

V 2
2

2
� gz2b � m

# a P1

r
� a1 

V 2
1

2
� gz1b

  hturbine–gen = 80%

100 m3/s

hL = 35 m

2

120 m

1

Generator

Turbine

FIGURE 12–32
Schematic for Example 12–8.
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We take point 2 as the reference level, and thus z2 � 0. Also, both points 1
and 2 are open to the atmosphere (P1 � P2 � Patm) and the flow velocities
are negligible at both points (V1 � V2 � 0). Then the energy equation for
steady, incompressible flow reduces to

or

Substituting, the extracted turbine head and the corresponding turbine
power are

hturbine, e � z1 � hL � 120 � 35 � 85 m

Therefore, a perfect turbine–generator would generate 83,400 kW of elec-
tricity from this resource. The electric power generated by the actual unit is

W
.

electric � hturbine–genW
.

turbine, e � (0.80)(83.4 MW) � 66.7 MW

Discussion Note that the power generation would increase by almost 1 MW
for each percentage point improvement in the efficiency of the turbine–
generator unit. 

EXAMPLE 12–9 Fan Selection for Air Cooling of a Computer

A fan is to be selected to cool a computer case whose dimensions are 12 cm
� 40 cm � 40 cm (Fig. 12–33). Half of the volume in the case is expected
to be filled with components and the other half to be air space. A 5-cm-
diameter hole is available at the back of the case for the installation of the
fan that is to replace the air in the void spaces of the case once every second.
Small low-power fan–motor combined units are available in the market and
their efficiency is estimated to be 30 percent. Determine (a) the wattage of the
fan–motor unit to be purchased and (b) the pressure difference across 
the fan. Take the air density to be 1.20 kg/m3.

Solution A fan is to cool a computer case by completely replacing the air
inside once every second. The power of the fan and the pressure difference
across it are to be determined.
Assumptions 1 The flow is steady and incompressible. 2 Losses other than
those due to the inefficiency of the fan–motor unit are negligible. 3 The flow
at the outlet is fairly uniform except near the center (due to the wake of the
fan motor), and the kinetic energy correction factor at the outlet is 1.10.
Properties The density of air is given to be 1.20 kg/m3.
Analysis (a) Noting that half of the volume of the case is occupied by the
components, the air volume in the computer case is

 � 0.5 112 cm � 40 cm � 40 cm 2 � 9600 cm3

V � 1Void fraction 2 1Total case volume 2

W
#

turbine, e � m
#
ghturbine, e � 1105 kg>s 2 19.81 m>s2 2 185 m 2 a 1 kJ>kg

1000 m2>s2b � 83,400 kW

hturbine, e � z1 � hL 

P1

rg
� a1 

V2
1

2g
� z1 � hpump, u �

P2

rg
� a2 

V2
2

2g
� z2   � hturbine, e � hL 
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Schematic for Example 12–9.
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Therefore, the volume and mass flow rates of air through the case are

The cross-sectional area of the opening in the case and the average air
velocity through the outlet are

We draw the control volume around the fan such that both the inlet and the
outlet are at atmospheric pressure (P1 � P2 � Patm), as shown in Fig. 12–33,
where the inlet section 1 is large and far from the fan so that the flow velocity
at the inlet section is negligible (V1 ≅ 0). Noting that z1 � z2 and frictional
losses in the flow are disregarded, the mechanical losses consist of fan losses
only and the energy equation (Eq. 12–29) simplifies to

Solving for W
.
fan � E

.
mech loss, fan � W

.
fan, u and substituting,

Then the required electric power input to the fan is determined to be

Therefore, a fan–motor rated at about a half watt is adequate for this job
(Fig. 12–34). (b) To determine the pressure difference across the fan unit,
we take points 3 and 4 to be on the two sides of the fan on a horizontal line.
This time z3 � z4 again and V3 � V4 since the fan is a narrow cross section,
and the energy equation reduces to

Solving for P4 � P3 and substituting,

Therefore, the pressure rise across the fan is 15.8 Pa.
Discussion The efficiency of the fan–motor unit is given to be 30 percent,
which means 30 percent of the electric power W

.
electric consumed by the unit

is converted to useful mechanical energy while the rest (70 percent) is
“lost” and converted to thermal energy. Also, a more powerful fan is required
in an actual system to overcome frictional losses inside the computer case.
Note that if we had ignored the kinetic energy correction factor at the outlet,
the required electrical power and pressure rise would have been 10 percent
lower in this case (0.460 W and 14.4 Pa, respectively).

P4 � P3 �
rW

#
fan, u

m
# �

11.2 kg>m3 2 10.152 W 2
0.0115 kg>s  a 1 Pa #m3

1 Ws
b � 15.8 Pa

m
#
 
P3

r
� W

#
fan � m

#
 
P4

r
� E

#
mech loss, fan  S   W

#
fan, u � m

#
 
P4 � P3

r

W
#

elect �
W
#

fan, u

hfan–motor
�

0.152 W

0.3
� 0.506 W

W
#

fan, u � m 
#
a2 

V 2
2

2
� 10.0115 kg>s 2 11.10 2  14.90 m>s 2 2

2
 a 1 N

1 kg #m>s2
b � 0.152 W

m
#a P1

r
� a1

V 2
1

2
  � gz2 b � W

#
fan � m

#a P2

r
� a2

V 2
2

2
� gz2 b � W

#
turbine � E

#
mech loss, fan

 V �
V
#

A
�

9.6 � 10�3 m3>s
1.96 � 10�3 m2

� 4.90 m>s 

 A �
pD2

4
�
p 10.05 m 2 2

4
� 1.96 � 10�3 m2

 m
#

� rV
#

� 11.20 kg>m3 2 19.6 � 10�3 m3>s 2 � 0.0115 kg>s
 V

#
�

V
¢t

�
9600 cm3

1 s
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FIGURE 12–34
The cooling fans used in computers
and computer power supplies are
typically small and consume only a
few watts of electrical power.
© Getty RF.
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CHAPTER 12
495

This chapter deals with the Bernoulli and energy equations
and their applications.

The Bernoulli equation is a relation between pressure,
velocity, and elevation in steady, incompressible flow, and is
expressed along a streamline and in regions where net viscous
forces are negligible as

The Bernoulli equation can also be considered as an expres-
sion of mechanical energy balance, stated as: The sum of the
kinetic, potential, and flow energies of a fluid particle is con-
stant along a streamline during steady flow when the com-
pressibility and frictional effects are negligible. Multiplying
the Bernoulli equation by density gives

where P is the static pressure, which represents the actual
pressure of the fluid; rV2/2 is the dynamic pressure, which
represents the pressure rise when the fluid in motion is
brought to a stop; and rgz is the hydrostatic pressure, which
accounts for the effects of fluid weight on pressure. The sum
of the static, dynamic, and hydrostatic pressures is called the
total pressure. The Bernoulli equation states that the total
pressure along a streamline is constant. The sum of the static
and dynamic pressures is called the stagnation pressure, which
represents the pressure at a point where the fluid is brought to
a complete stop in a frictionless manner. The Bernoulli equa-
tion can also be represented in terms of “heads” by dividing
each term by g,

P

rg
�

V 2

2g
� z � H � constant

P � r 
V 2

2
� rgz � constant

P

r
�

V 2

2
� gz � constant

where P/rg is the pressure head, which represents the height
of a fluid column that produces the static pressure P; V2/2g is
the velocity head, which represents the elevation needed for a
fluid to reach the velocity V during frictionless free fall; and z
is the elevation head, which represents the potential energy
of the fluid. Also, H is the total head for the flow. The curve
that represents the sum of the static pressure and the eleva-
tion heads, P/rg � z, is called the hydraulic grade line (HGL),
and the curve that represents the total head of the fluid,
P/rg � V2/2g � z, is called the energy grade line (EGL).

The energy equation for steady, incompressible flow is ex-
pressed as

where

The Bernoulli and energy equations are two of the most fun-
damental relations in fluid mechanics.

 emech, loss � u2 � u1 � qnet in

 hL �
emech loss, piping

g
�

E
#

mech loss, piping

m
#
g

 hturbine, e �
wturbine, e

g
�

W
#
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m
#
g

�
W
#

turbine

hturbinem
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g

 hpump, u �
wpump, u

g
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pump, u

m
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g
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hpumpW
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pump

m
#
g
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rg
�a2 

V 2
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2g
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V 2
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Bernoulli Equation

12–1C What is streamwise acceleration? How does it differ
from normal acceleration? Can a fluid particle accelerate in
steady flow?

12–2C Express the Bernoulli equation in three different
ways using (a) energies, (b) pressures, and (c) heads.

12–3C What are the three major assumptions used in the
derivation of the Bernoulli equation?

12–4C Define static, dynamic, and hydrostatic pressure.
Under what conditions is their sum constant for a flow
stream?

12–5C What is stagnation pressure? Explain how it can be
measured.

12–6C Define pressure head, velocity head, and elevation
head for a fluid stream and express them for a fluid stream
whose pressure is P, velocity is V, and elevation is z.

12–7C What is the hydraulic grade line? How does it differ
from the energy grade line? Under what conditions do both
lines coincide with the free surface of a liquid?

12–8C How is the location of the hydraulic grade line deter-
mined for open-channel flow? How is it determined at the
outlet of a pipe discharging to the atmosphere?

12–9C In a certain application, a siphon must go over a
high wall. Can water or oil with a specific gravity of 0.8 go
over a higher wall? Why?

12–10C Explain how and why a siphon works. Someone
proposes siphoning cold water over a 7-m-high wall. Is this
feasible? Explain.

12–11C A glass manometer with oil as the working fluid is
connected to an air duct as shown in Fig. P12–11C. Will the
oil levels in the manometer be as in Fig. P12–11Ca or b?
Explain. What would your response be if the flow direction is
reversed?
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12–12C The velocity of a fluid flowing in a pipe is to be
measured by two different Pitot-type mercury manometers
shown in Fig. P12–12C. Would you expect both manometers
to predict the same velocity for flowing water? If not, which
would be more accurate? Explain. What would your response
be if air were flowing in the pipe instead of water?

Flow Flow

(a) (b)

FIGURE P12–11C

Flow Flow

1
2

FIGURE P12–12C

* Problems designated by a “C” are concept questions, and students
are encouraged to answer them all. Problems designated by an “E”
are in English units, and the SI users can ignore them. Problems
with the icon are solved using EES, and complete solutions
together with parametric studies are included on the text specific
web site. Problems with the icon are comprehensive in nature
and are intended to be solved with a computer, preferably using the
EES software that accompanies this text.

PROBLEMS*

12–13C The water level of a tank on a building roof is 20 m
above the ground. A hose leads from the tank bottom to the
ground. The end of the hose has a nozzle, which is pointed
straight up. What is the maximum height to which the water
could rise? What factors would reduce this height?

12–14C A student siphons water over a 8.5-m-high wall at
sea level. She then climbs to the summit of Mount Shasta
(elevation 4390 m, Patm � 58.5 kPa) and attempts the same
experiment. Comment on her prospects for success.

12–15 In a hydroelectric power plant, water enters the
turbine nozzles at 800 kPa absolute with a low velocity. If 
the nozzle outlets are exposed to atmospheric pressure of
100 kPa, determine the maximum velocity to which water can
be accelerated by the nozzles before striking the turbine
blades.

12–16 A Pitot-static probe is used to measure the speed of
an aircraft flying at 3000 m. If the differential pressure read-
ing is 3 kPa, determine the speed of the aircraft.
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12–22 Water enters a tank of diameter DT steadily at a mass
flow rate of m

.
in. An orifice at the bottom with diameter Do

allows water to escape. The orifice has a rounded entrance, so
the frictional losses are negligible. If the tank is initially
empty, (a) determine the maximum height that the water will
reach in the tank and (b) obtain a relation for water height z
as a function of time.

12–17 While traveling on a dirt road, the bottom of a car
hits a sharp rock and a small hole develops at the bottom of
its gas tank. If the height of the gasoline in the tank is 40 cm,
determine the initial velocity of the gasoline at the hole. Dis-
cuss how the velocity will change with time and how the
flow will be affected if the lid of the tank is closed tightly.
Answer: 2.80 m/s

12–18E The drinking water needs of an office are met
by large water bottles. One end of a 0.25-in-

diameter plastic hose is inserted into the bottle placed on a
high stand, while the other end with an on/off valve is main-
tained 2 ft below the bottom of the bottle. If the water level
in the bottle is 1.5 ft when it is full, determine how long it
will take at the minimum to fill an 8-oz glass (� 0.00835 ft3)
(a) when the bottle is first opened and (b) when the bottle is
almost empty. Neglect frictional losses.

Water
1.5 ft

2 ft

FIGURE P12–18E

12–23E Water flows through a horizontal pipe at a rate of 
1 gal/s. The pipe consists of two sections of diameters 4 in
and 2 in with a smooth reducing section. The pressure differ-
ence between the two pipe sections is measured by a mercury
manometer. Neglecting frictional effects, determine the dif-
ferential height of mercury between the two pipe sections.
Answer: 0.52 in

Do
z

DT

inm⋅

FIGURE P12–22

4 in 2 in

h

FIGURE P12–23E

12–19 A piezometer and a Pitot tube are tapped into a 4-cm-
diameter horizontal water pipe, and the height of the water
columns are measured to be 26 cm in the piezometer and 
35 cm in the Pitot tube (both measured from the top surface
of the pipe). Determine the velocity at the center of the pipe.

12–20 The diameter of a cylindrical water tank is Do and its
height is H. The tank is filled with water, which is open to
the atmosphere. An orifice of diameter D with a smooth
entrance (i.e., negligible losses) is open at the bottom.
Develop a relation for the time required for the tank (a) to
empty halfway and (b) to empty completely.

12–21E A siphon pumps water from a large reservoir to a
lower tank that is initially empty. The tank also has a rounded
orifice 20 ft below the reservoir surface where the water
leaves the tank. Both the siphon and the orifice diameters are
2 in. Ignoring frictional losses, determine to what height the
water will rise in the tank at equilibrium.

12–24 An airplane is flying at an altitude of 12,000 m.
Determine the gage pressure at the stagnation point on the
nose of the plane if the speed of the plane is 300 km/h. How
would you solve this problem if the speed were 1050 km/h?
Explain.
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12–31 The water pressure in the mains of a city at a partic-
ular location is 350 kPa gage. Determine if this main can
serve water to neighborhoods that are 50 m above this loca-
tion.

12–32 A pressurized tank of water has a 10-cm-diameter
orifice at the bottom, where water discharges to the atmo-
sphere. The water level is 2.5 m above the outlet. The tank air
pressure above the water level is 250 kPa (absolute) while the
atmospheric pressure is 100 kPa. Neglecting frictional
effects, determine the initial discharge rate of water from the
tank. Answer: 0.147 m3/s

12–25 The air velocity in the duct of a heating system is to
be measured by a Pitot-static probe inserted into the duct par-
allel to the flow. If the differential height between the water
columns connected to the two outlets of the probe is 2.4 cm,
determine (a) the flow velocity and (b) the pressure rise at
the tip of the probe. The air temperature and pressure in the
duct are 45°C and 98 kPa, respectively.

12–26 The water in a 8-m-diameter, 3-m-high aboveground
swimming pool is to be emptied by unplugging a 3-cm-
diameter, 25-m-long horizontal pipe attached to the bottom of
the pool. Determine the maximum discharge rate of water
through the pipe. Also, explain why the actual flow rate will
be less.

12–27 Reconsider Prob. 12–26. Determine how long it will
take to empty the swimming pool completely. Answer: 15.4 h

12–28 Reconsider Prob. 12–27. Using EES (or other)
software, investigate the effect of the discharge

pipe diameter on the time required to empty the pool com-
pletely. Let the diameter vary from 1 to 10 cm in increments
of 1 cm. Tabulate and plot the results.

12–29 Air at 110 kPa and 50°C flows upward through a 
6-cm-diameter inclined duct at a rate of 45 L/s. The duct
diameter is then reduced to 4 cm through a reducer. The
pressure change across the reducer is measured by a water
manometer. The elevation difference between the two points
on the pipe where the two arms of the manometer are
attached is 0.20 m. Determine the differential height between
the fluid levels of the two arms of the manometer.

2.6 in

12.2 psia

Air 1.8 in

11.8 psia

FIGURE P12–30E

2.5 m

10 cm

Air
250 kPa

FIGURE P12–32

Air

h

FIGURE P12–29

12–30E Air is flowing through a venturi meter whose
diameter is 2.6 in at the entrance part (location 1) and 1.8 in
at the throat (location 2). The gage pressure is measured to be
12.2 psia at the entrance and 11.8 psia at the throat. Neglect-
ing frictional effects, show that the volume flow rate can be
expressed as

and determine the flow rate of air. Take the air density to be
0.075 lbm/ft3.

V
#

� A2B
2 1P1 � P2 2
r 11 � A2

2>A2
1 2

12–33 Reconsider Prob. 12–32. Using EES (or other)
software, investigate the effect of water height

in the tank on the discharge velocity. Let the water height
vary from 0 to 5 m in increments of 0.5 m. Tabulate and plot
the results.

12–34 A handheld bicycle pump can be used as an atom-
izer to generate a fine mist of paint or pesticide by forcing air
at a high velocity through a small hole and placing a short
tube between the liquid reservoir and the high-speed air jet.
The pressure across a subsonic jet exposed to the atmosphere
is nearly atmospheric, and the surface of the liquid in the
reservoir is also open to atmospheric pressure. In light of this,
explain how the liquid is sucked up the tube. Hint: Read 
Sec. 12–1 carefully.
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5 cm Air

0.3 cm

10 cm

20 cm

Liquid
rising

FIGURE P12–34

12–35 The water level in a tank is 15 m above the ground.
A hose is connected to the bottom of the tank, and the nozzle
at the end of the hose is pointed straight up. The tank cover is
airtight, and the air pressure above the water surface is 3 atm
gage. The system is at sea level. Determine the maximum
height to which the water stream could rise. Answer: 46.0 m

Pitot-static
probe

Manometer

Air 7.3 cm

FIGURE P12–36

15 m

3 atm

h

FIGURE P12–35

12–38 In cold climates, water pipes may freeze and burst if
proper precautions are not taken. In such an occurrence, the
exposed part of a pipe on the ground ruptures, and water
shoots up to 42 m. Estimate the gage pressure of water in the
pipe. State your assumptions and discuss if the actual pres-
sure is more or less than the value you predicted.

Energy Equation
12–39C What is irreversible head loss? How is it related to
the mechanical energy loss?

12–40C What is useful pump head? How is it related to the
power input to the pump?

12–41C What is the kinetic energy correction factor? Is it
significant?

12–42C The water level in a tank is 20 m above the
ground. A hose is connected to the bottom of the tank, and
the nozzle at the end of the hose is pointed straight up. The
water stream from the nozzle is observed to rise 25 m above
the ground. Explain what may cause the water from the hose
to rise above the tank level.

12–43C A person is filling a knee-high bucket with water
using a garden hose and holding it such that water discharges
from the hose at the level of his waist. Someone suggests that
the bucket will fill faster if the hose is lowered such that water
discharges from the hose at the knee level. Do you agree with
this suggestion? Explain. Disregard any frictional effects.

12–44 A 3-m-high tank filled with water has a discharge
valve near the bottom and another near the top. (a) If these
two valves are opened, will there be any difference between
the discharge velocities of the two water streams? (b) If a
hose whose discharge end is left open on the ground is first
connected to the lower valve and then to the higher valve,
will there be any difference between the discharge rates of
water for the two cases? Disregard any frictional effects.

12–45E In a hydroelectric power plant, water flows from an
elevation of 240 ft to a turbine, where electric power is gen-
erated. For an overall turbine–generator efficiency of 83 per-
cent, determine the minimum flow rate required to generate
100 kW of electricity. Answer: 370 lbm/s

12–46E Reconsider Prob. 12–45E. Determine the flow rate
of water if the irreversible head loss of the piping system
between the free surfaces of the source and the sink is 36 ft.

12–47 A fan is to be selected to ventilate a bathroom
whose dimensions are 2 m � 3 m � 3 m. The

air velocity is not to exceed 8 m/s to minimize vibration and
noise. The combined efficiency of the fan–motor unit to be
used can be taken to be 50 percent. If the fan is to replace the
entire volume of air in 10 min, determine (a) the wattage of
the fan–motor unit to be purchased, (b) the diameter of the
fan casing, and (c) the pressure difference across the fan.
Take the air density to be 1.25 kg/m3 and disregard the effect
of the kinetic energy correction factors.

12–36 A Pitot-static probe connected to a water manometer
is used to measure the velocity of air. If the deflection (the
vertical distance between the fluid levels in the two arms) is
7.3 cm, determine the air velocity. Take the density of air to
be 1.25 kg/m3.

12–37E The air velocity in a duct is measured by a Pitot-static
probe connected to a differential pressure gage. If the air is at
13.4 psia absolute and 70°F and the reading of the differen-
tial pressure gage is 0.15 psi, determine the air velocity.
Answer: 143 ft/s

CHAPTER 12
499

cen80209_ch12_p471-504.QXP  12/16/10  2:17 PM  Page 499



12–48 Water is being pumped from a large lake to a reser-
voir 25 m above at a rate of 25 L/s by a 10-kW (shaft) pump.
If the irreversible head loss of the piping system is 5 m,
determine the mechanical efficiency of the pump. Answer:
73.6 percent

12–49 Reconsider Prob. 12–48. Using EES (or other)
software, investigate the effect of irreversible

head loss on the mechanical efficiency of the pump. Let the
head loss vary from 0 to 15 m in increments of 1 m. Plot the
results, and discuss them.

12–50 A 7-hp (shaft) pump is used to raise water to a 15-m
higher elevation. If the mechanical efficiency of the pump is
82 percent, determine the maximum volume flow rate of
water.

12–51 Water flows at a rate of 0.035 m3/s in a horizontal
pipe whose diameter is reduced from 15 cm to 8 cm by a
reducer. If the pressure at the centerline is measured to be
480 kPa and 445 kPa before and after the reducer, respec-
tively, determine the irreversible head loss in the reducer. Take 
the kinetic energy correction factors to be 1.05. Answer: 1.18 m

12–52 The water level in a tank is 20 m above the ground.
A hose is connected to the bottom of the tank, and the nozzle
at the end of the hose is pointed straight up. The tank is at
sea level, and the water surface is open to the atmosphere. In
the line leading from the tank to the nozzle is a pump, which
increases the pressure of water. If the water jet rises to a
height of 27 m from the ground, determine the minimum
pressure rise supplied by the pump to the water line.

500
BERNOULLI AND ENERGY EQUATIONS

12–53 A hydraulic turbine has 85 m of head available at a
flow rate of 0.25 m3/s, and its overall turbine–generator effi-
ciency is 78 percent. Determine the electric power output of
this turbine.

12–54 An oil pump is drawing 25 kW of electric power
while pumping oil with r � 860 kg/m3 at a rate of 0.1 m3/s.
The inlet and outlet diameters of the pipe are 8 cm and 12 cm,
respectively. If the pressure rise of oil in the pump is mea-
sured to be 250 kPa and the motor efficiency is 90 percent,
determine the mechanical efficiency of the pump. Take the
kinetic energy correction factor to be 1.05.

Air

8 m/s

Exhaust
fan

FIGURE P12–47

20 m

27 m

FIGURE P12–52

Water
20 L/s

ΔP = 2 kPa

FIGURE P12–55

25 kW

ΔP = 250 kPa

0.1 m3/s

Motor

8 cm

12 cm

Oil

Pump

FIGURE P12–54

12–55 Water flows at a rate of 20 L/s through a horizontal
pipe whose diameter is constant at 3 cm. The pressure drop
across a valve in the pipe is measured to be 2 kPa, as shown
in Fig P12–55. Determine the irreversible head loss of the
valve, and the useful pumping power needed to overcome the
resulting pressure drop. Answers: 0.204 m, 40 W
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0.03 m3/s
45 m

Pump
20 kW

FIGURE P12–60

12–61 Water in a partially filled large tank is to be supplied
to the roof top, which is 8 m above the water level in the
tank, through a 2.5-cm-internal-diameter pipe by maintaining
a constant air pressure of 300 kPa (gage) in the tank. If the
head loss in the piping is 2 m of water, determine the dis-
charge rate of the supply of water to the roof top.

12–62 Underground water is to be pumped by a 78 percent
efficient 5-kW submerged pump to a pool whose free surface
is 30 m above the underground water level. The diameter of
the pipe is 7 cm on the intake side and 5 cm on the discharge
side. Determine (a) the maximum flow rate of water and
(b) the pressure difference across the pump. Assume the ele-
vation difference between the pump inlet and the outlet and
the effect of the kinetic energy correction factors to be 
negligible.

12–56E The water level in a tank is 66 ft above the ground.
A hose is connected to the bottom of the tank at the ground
level and the nozzle at the end of the hose is pointed straight
up. The tank cover is airtight, but the pressure over the water
surface is unknown. Determine the minimum tank air pres-
sure (gage) that will cause a water stream from the nozzle to
rise 90 ft from the ground.

12–57 A large tank is initially filled with water 5 m above
the center of a sharp-edged 10-cm-diameter orifice. The tank
water surface is open to the atmosphere, and the orifice
drains to the atmosphere. If the total irreversible head loss in
the system is 0.3 m, determine the initial discharge velocity
of water from the tank. Take the kinetic energy correction
factor at the orifice to be 1.2.

12–58 Water enters a hydraulic turbine through a 30-cm-
diameter pipe at a rate of 0.6 m3/s and exits through a 25-cm-
diameter pipe. The pressure drop in the turbine is measured
by a mercury manometer to be 1.2 m. For a combined turbine–
generator efficiency of 83 percent, determine the net electric
power output. Disregard the effect of the kinetic energy cor-
rection factors.

We
⋅

30 cm Turbine

ΔP = 1.2 m Hg

Generator

25 cm

FIGURE P12–58

12–59 The velocity profile for turbulent flow in a circular
pipe is approximated as u(r) � umax(1 � r/R)1/n, where n � 7.
Determine the kinetic energy correction factor for this flow.
Answer: 1.06

12–60 Water is pumped from a lower reservoir to a higher
reservoir by a pump that provides 20 kW of useful mechani-
cal power to the water. The free surface of the upper reservoir
is 45 m higher than the surface of the lower reservoir. If the
flow rate of water is measured to be 0.03 m3/s, determine the
irreversible head loss of the system and the lost mechanical
power during this process.

30 m

Pool

FIGURE P12–62

12–63 Reconsider Prob. 12–62. Determine the flow rate of
water and the pressure difference across the pump if the irre-
versible head loss of the piping system is 4 m.
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12–67 A very large tank contains air at 102 kPa at a location
where the atmospheric air is at 100 kPa and 20°C. Now a 
2-cm-diameter tap is opened. Determine the maximum flow
rate of air through the hole. What would your response be if
air is discharged through a 2-m-long, 4-cm-diameter tube with
a 2-cm-diameter nozzle? Would you solve the problem the
same way if the pressure in the storage tank were 300 kPa?

12–64 A fireboat is to fight fires at coastal areas by drawing
seawater with a density of 1030 kg/m3 through a 20-cm-diam-
eter pipe at a rate of 0.1 m3/s and discharging it through a hose
nozzle with an exit diameter of 5 cm. The total irreversible
head loss of the system is 3 m, and the position of the nozzle
is 3 m above sea level. For a pump efficiency of 70 percent,
determine the required shaft power input to the pump and the
water discharge velocity. Answers: 199 kW, 50.9 m/s

3 m

FIGURE P12–64

Review Problems

12–65 Air flows through a pipe at a rate of 170 L/s. The
pipe consists of two sections of diameters 18 cm and 10 cm
with a smooth reducing section that connects them. The pres-
sure difference between the two pipe sections is measured by
a water manometer. Neglecting frictional effects, determine
the differential height of water between the two pipe sections.
Take the air density to be 1.20 kg/m3. Answer: 2.60 cm

18 cmAir
170 L/s

10 cm

h

FIGURE P12–65

2 cmAir
102 kPa

100 kPa
20°C

2 cm

4 cm

FIGURE P12–67

3 mWater

10 cm
80 m

FIGURE P12–70

12–68 Water is flowing through a Venturi meter whose
diameter is 7 cm at the entrance part and 4 cm at the throat.
The pressure is measured to be 380 kPa at the entrance and
150 kPa at the throat. Neglecting frictional effects, determine
the flow rate of water. Answer: 0.0285 m3/s

12–69 Water flows at a rate of 0.025 m3/s in a horizontal
pipe whose diameter increases from 6 to 11 cm by an
enlargement section. If the head loss across the enlargement
section is 0.45 m and the kinetic energy correction factor at
both the inlet and the outlet is 1.05, determine the pressure
change.

12–70 A 3-m-high large tank is initially filled with water.
The tank water surface is open to the atmosphere, and a
sharp-edged 10-cm-diameter orifice at the bottom drains to
the atmosphere through a horizontal 80-m-long pipe. If the
total irreversible head loss of the system is determined to be
1.5 m, determine the initial velocity of the water from the
tank. Disregard the effect of the kinetic energy correction fac-
tors. Answer: 5.42 m/s

12–66 Air at 100 kPa and 25°C flows in a horizontal
duct of variable cross section. The water col-

umn in the manometer that measures the difference between
two sections has a vertical displacement of 8 cm. If the veloc-
ity in the first section is low and the friction is negligible,
determine the velocity at the second section. Also, if the
manometer reading has a possible error of �2 mm, conduct
an error analysis to estimate the range of validity for the
velocity found.
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12–71 Reconsider Prob. 12–70. Using EES (or other)
software, investigate the effect of the tank

height on the initial discharge velocity of water from the
completely filled tank. Let the tank height vary from 2 to 
15 m in increments of 1 m, and assume the irreversible head
loss to remain constant. Tabulate and plot the results.

12–72 Reconsider Prob. 12–70. In order to drain the tank
faster, a pump is installed near the tank exit. Determine the
pump head input necessary to establish an average water
velocity of 6.5 m/s when the tank is full.

12–73E The water level in a tank is 120 ft above the ground.
A hose is connected to the bottom of the tank, and the nozzle
at the end of the hose is pointed straight up. The tank is at sea
level, and the water surface is open to the atmosphere. In the
line leading from the tank to the nozzle is a pump, which
increases the water pressure by 10 psia. Determine the maxi-
mum height to which the water stream could rise.

12–74 A wind tunnel draws atmospheric air at 20°C and
101.3 kPa by a large fan located near the exit of the tunnel. If
the air velocity in the tunnel is 80 m/s, determine the pressure
in the tunnel.

Design and Essay Problems

12–75 Computer-aided designs, the use of better materials,
and better manufacturing techniques have resulted in a
tremendous increase in the efficiency of pumps, turbines, and
electric motors. Contact one or more pump, turbine, and
motor manufacturers and obtain information about the effi-
ciency of their products. In general, how does efficiency vary
with rated power of these devices?

12–76 Using a handheld bicycle pump to generate an air
jet, a soda can as the water reservoir, and a straw as the tube,
design and build an atomizer. Study the effects of various
parameters such as the tube length, the diameter of the exit
hole, and the pumping speed on performance.

12–77 Using a flexible drinking straw and a ruler, explain
how you would measure the water flow velocity in a river.

12–78 The power generated by a wind turbine is proportional
to the cube of the wind velocity. Inspired by the acceleration of
a fluid in a nozzle, someone proposes to install a reducer casing
to capture the wind energy from a larger area and accelerate
it before the wind strikes the turbine blades, as shown in
Fig. P12–78. Evaluate if the proposed modification should be
given a consideration in the design of new wind turbines.

20°C
101.3 kPa

Wind tunnel

80 m/s

FIGURE P12–74

Wind

FIGURE P12–78
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