
11.1

 Data Communications

And Networking fourth Edition

Forouzan

Chapter 11

Data Link Control

Data Link Control

The two main functions of the data link
layer are :-

1-data link control (deals with the design and

procedures for communication between two

adjacent nodes: node-to-node communication).

2- media access control (deals how share the link).

11.2

Data link control functions include framing, flow

and error control, and software implemented
protocols that provide smooth and reliable
transmission of frames between nodes.

To implement data link control, we need protocols.

 protocol :- is a set of rules that need to be
implemented in software and run by the two nodes
involved in data exchange at the data link layer.

11.3

Data transmission in the physical layer means

moving bits in the form of a signal from the

source to the destination.

The physical layer provides bit synchronization

to ensure that the sender and receiver use

the same bit durations and timing.

11.4

11.5

11-1 FRAMING

The data link layer needs to pack bits into frames, so

that each frame is distinguishable from another. Our

postal system practices a type of framing. The simple

act of inserting a letter into an envelope separates

one piece of information from another; the envelope

serves as the delimiter.

Fixed-Size Framing – no boundaries for frames, size used as

the delimeter

Variable-Size Framing – define begining and end of frame,

character oriented or bit oriented approach

Topics discussed in this section:

Framing in the data link layer separates a
message from one source to a destination, or
from other messages to other destinations, by
adding a sender address and a destination
address.

 The destination address defines where the packet
is to go; the sender address helps the recipient
acknowledge the receipt.

11.6

Fixed-Size Framing

Frames can be of fixed or variable size. In fixed-size

framing, there is no need for defining the boundaries of
the frames; the size itself can be used as a delimiter.

 An example of this type of framing is the ATM
wide-area network, which uses frames of fixed
size called cells.

ATM: Asynchronous Transfer Mode(connection oriented,
high-speed network technology that is used in both LAN
and WAN over optical fiber and operates upto gigabit
speed.

11.7

Variable-Size Framing

We concerns with variable-size framing,
prevalent in local area networks.

In variable-size framing, we need a way to
define the end of the frame and the
beginning of the next.

Two approaches were used for this purpose:

a character-oriented approach and a bit-
oriented approach.

11.8

Character-Oriented Protocols

In a character-oriented protocol, data to be carried are 8-

bit characters from a coding system such as ASCII . The

header, which normally carries the source

 and destination addresses and other control information,

and the trailer, which carries error detection or error

correction redundant bits, are also multiples of 8 bits.

11.9

11.10

Figure 11.1 A frame in a character-oriented protocol

To separate one frame from the next, an 8-bit (1-byte)

flag is added at the beginning and the end of a frame.

The flag, composed of protocol-dependent special

characters, signals the start or end of a frame. Figure

11.1 shows the format of a frame in a character-oriented

protocol

Bit-Oriented Protocols

In a bit-oriented protocol, the data section of a frame is

a sequence of bits to be interpreted by the upper layer

as text, graphic, audio, video, and so on. However, in

addition to headers (and possible trailers), we still need

a delimiter to separate one frame from the other.

Most protocols use a special 8-bit pattern flag 01111110

as the delimiter to define the beginning and the end of

the frame, as shown in Figure 11.3.

11.11

11.12

Figure 11.3 A frame in a bit-oriented protocol

11.13

11-2 FLOW AND ERROR CONTROL

The most important responsibilities of the data link

layer are flow control and error control. Collectively,

these functions are known as data link control.

Flow Control

Error Control

Topics discussed in this section:

11.14

Flow control refers to a set of procedures

used to restrict the amount of data

that the sender can send before

waiting for acknowledgment.

Each receiving device has a block of memory, called a

buffer, reserved for storing incoming

data until they are processed. If the buffer begins to fill up,

the receiver must be able to tell the sender to halt

transmission until it is once again able to receive.

11.15

Error control in the data link layer is

based on automatic repeat request

(ARQ), which is the retransmission of

data.

Error control is both error detection and error

correction. It allows the receiver to tell the sender

of any frames lost or damaged in transmission

and coordinates the retransmission of those

frames by the sender.

11.16

11-3 PROTOCOLS

Now let us see how the data link layer can combine

framing, flow control, and error control to achieve the

delivery of data from one node to another. The protocols

are normally implemented in software by using one of

the common programming languages. To make our

discussions language-free, we have written in

pseudocode a version of each protocol that concentrates

mostly on the procedure instead of deeply the details of

language rules.

11.17

Figure 11.5 classification of protocols discussed in this chapter

11.18

11-4 NOISELESS CHANNELS

Let us first assume we have an ideal channel in

which no frames are lost, duplicated, or corrupted.

We introduce two protocols for this type of channel.

Simplest Protocol – has no flow or error control

Stop-and-Wait Protocol – sender sends one frame, stops until it

receives agree from receiver and then sends the next frame

Topics discussed in this section:

1-Simplest Protocol

 Our first protocol, which we call the Simplest Protocol, is
one that has no flow or error control. Like other protocols, it
is a unidirectional protocol in which data frames are
traveling in only one direction-from the sender to receiver.

 The receiver can immediately handle any frame it receives
with a processing time that is small enough to be negligible.

 The data link layer of the receiver immediately removes the
header from the frame and hands the data packet to
network layer, which can also accept the packet
immediately.

 In other words, the receiver can never be fill out with
incoming frames.

11.19

11.20

Figure 11.6 The design of the simplest protocol with no flow or error control

11.21

11.22

11.23

Figure 11.7 shows an example of communication using this protocol. It is very

simple. The sender sends a sequence of frames without even thinking about

the receiver. To send three frames, three events occur at the sender site and

three events at the receiver site. Note that the data frames are shown by tilted

boxes; the height of the box defines the transmission time difference between

the first bit and the last bit in the frame.

Example 11.1

Figure 11.7 Flow diagram for Example 11.1

Stop-and-Wait Protocol

 If data frames arrive at the receiver site faster than they
can be processed, the frames must be stored until their
use. Normally, the receiver does not have enough
storage space, especially if it is receiving data from

many sources.
 We need to tell the sender to slow down. There must be

feedback from the receiver to the sender.

 The sender sends one frame, stops until it receives
agreement the receiver (okay to go ahead), and then
sends the next frame. We still have unidirectional
communication for data frames, but auxiliary ACK frames
(simple tokens of acknowledgment) travel from the other
direction. We add flow control to our previous protocol.

11.24

11.25

Figure 11.8 Design of Stop-and-Wait Protocol

11.26

Figure 11.7 shows an example of communication using this protocol. It is still

very simple. The sender sends one frame and waits for feedback from the

receiver. When the ACK arrives, the sender sends the next frame. Note that

sending two frames in the protocol involves the sender in four events and the

receiver in two events.

Example 11.2

Figure 11.7 Flow diagram for Example 11.2

11.27

11-5 NOISY CHANNELS

Although the Stop-and-Wait Protocol gives us an

idea of how to add flow control to its predecessor,

noiseless channels are nonexistent. We discuss three

protocols in this section that use error control.

Stop-and-Wait Automatic Repeat Request(ARQ)

Go-Back-N Automatic Repeat Request

Selective Repeat Automatic Repeat Request

Topics discussed in this section:

11.28

Error correction in Stop-and-Wait ARQ is done by

keeping a copy of the sent frame and retransmitting

of the frame when the timer expires.

In Stop-and-Wait ARQ, we use sequence numbers

to number the frames.

The sequence numbers are based on modulo-2

arithmetic.

In Stop-and-Wait ARQ, the acknowledgment number

always announces in modulo-2 arithmetic the

sequence number of the next frame expected.

11.29

Figure 11.10 Design of the Stop-and-Wait ARQ Protocol

11.30

Figure 11.11 shows an example of Stop-and-Wait ARQ. Frame 0 is sent and

acknowledged. Frame 1 is lost and resent after the time-out. The resent frame 1 is

acknowledged and the timer stops. Frame 0(second) is sent and acknowledged, but

the acknowledgment is lost. The sender has no idea if the frame or the

acknowledgment is lost, so after the time-out, it resends frame 0, which is

acknowledged.

Example 11.3

Figure 11.11 Flow

diagram for Example 11.3

Pipelining

 In networking and in other areas, a task is often begun
before the previous task has ended. This is known as
pipelining. There is no pipelining in Stop-and-Wait ARQ
because we need to wait for a frame to reach the
destination and be acknowledged before the next frame can
be sent.

 Pipelining improves the efficiency of the transmission if the
number of bits in transition is large with respect to the
bandwidth-delay .

11.31

Go-Back-N Automatic Repeat Request

 To improve the efficiency of transmission (filling
the pipe), multiple frames must be in transition
while waiting for acknowledgment. In other
words, we need to let more than one frame be
outstanding to keep the channel busy while the
sender is waiting for acknowledgment.

 In this protocol we can send several frames
before receiving acknowledgments; we keep a
copy of these frames until the acknowledgments
arrive, Thus need sequence number for frames.

 11.32

11.33

In the Go-Back-N Protocol, the sequence

numbers are modulo 2m,

where m is the size of the sequence

number field in bits.

Note

For example, if m is 4, the only sequence
numbers are 0 through 15 inclusive. However,

we can repeat the sequence.

11.34

Figure 11.12 Send window for Go-Back-N ARQ

11.35

The send window is an abstract concept

defining an imaginary box of size 2m − 1 with

three variables: Sf, Sn, and Ssize.

The send window can slide one

or more slots when a valid acknowledgment

arrives.

 Sf defines the sequence number of the first (oldest)

outstanding frame.

Sn holds the sequence number that will be assigned

to the next frame to be sent.

Ssize defines the size of the window, which is fixed in

our protocol.

11.36

Figure 11.13 Receive window for Go-Back-N ARQ

The receive window is an abstract concept defining an

imaginary box of size 1 with one single variable Rn.

The window slides when a correct frame has arrived;

sliding occurs one slot at a time.

11.37

Figure 11.14 Design of Go-Back-N ARQ

Go-Back-N ARQ Versus Stop-and- Wait ARQ

 there is a similarity between Go-Back-N ARQ and
Stop-and-Wait ARQ. We can say that the Stop-
and-Wait ARQ Protocol is actually a Go-Back-N
ARQ in which there are only two sequence
numbers and the send window size is 1. In other

words, m = 1, 2m - 1 = 1. In Go-Back-N ARQ, we
said that the addition is modulo- 2m ;

In Stop-and-Wait ARQ it is 2, which is the same as

2m when m = 1.

11.38

Selective Repeat Automatic Repeat
Request

 Go-Back-N ARQ simplifies the process at the receiver site. The
receiver keeps track of only one variable, and there is no need
to buffer out-of-order frames; they are simply discarded.
However, this protocol is very inefficient for a noisy link. Why ?
In a noisy link a frame has a higher probability of damage,
which means the resending of multiple frames.

 This resending uses up the bandwidth and slows down the
transmission. For noisy links, there is another mechanism that
does not resend N frames when just one frame is damaged;

 only the damaged frame is resent. This mechanism is called
Selective Repeat ARQ. It is more efficient for noisy links, but
the processing at the receiver is more complex

11.39

 This Protocol also uses two windows: a send window
and a receive window.

 There are differences between the windows in this
protocol and the ones in Go-Back-N. First, the size of the
send window is much smaller; it is 2m-1. The reason for
this will be discussed later. Second, the receive window
is the same size as the send window.

 For example, if m = 4, the sequence numbers go from 0
to 15, but the size of the window is just 8 (it is 15 in the
Go-Back-N Protocol). The smaller window size means
less efficiency in filling the pipe, but the fact that there
are fewer duplicate frames.

11.40

11.41

Figure 11.18 Send window for Selective Repeat ARQ

 The receive window in Selective Repeat is totally different
from the one in Go Back-N. First, the size of the receive
window is the same as the size of the send window(2m-1).
The Selective Repeat Protocol allows as many frames as
the size of the receive window to arrive out of order and be
kept until there is a set of in-order frames to be delivered to
the network layer.

 Because the sizes of the send window and receive window
are the same, all the frames in the send frame can arrive
out of order and be stored until they can be delivered. We
need, however, to mention that the receiver never delivers
packets out of order to the network layer. Figure 11.19
shows the receive window in this

11.42

11.43

Figure 11.19 Receive window for Selective Repeat ARQ

11.44

Figure 11.20 Design of Selective Repeat ARQ

11.45

In Selective Repeat ARQ, the size of the

sender and receiver window

must be at most one-half of 2m.

Note

Piggybacking

 The three protocols we discussed in this section are all

unidirectional: data frames flow in only one direction although

control information such as ACK and NAK frames can travel in

the other direction. In real life, data frames are normally flowing

in both directions: from node A to node B and from node B to

node A. This means that the control information also needs to

flow in both directions.

 A technique called piggybacking is used to improve the

efficiency of the bidirectional protocols. When a frame is

carrying data from A to B, it can also carry control information

about arrived (or lost) frames from B; and verse versa.

11.46

11.47

Figure 11.24 Design of piggybacking in Go-Back-N ARQ

Piggybacking – control information flow in both directions and

improves the efficiency of bidirectional protocols

 Note that each node now has two windows: one send

window and one receive window. Both also need to

use a timer.

 An important point about piggybacking is that both

sites must use the same algorithm.

 This algorithm is complicated because it needs to

combine two arrival events into one.

11.48

11.49

 HDLC

:

High-level Data Link Control (HDLC) is a bit-oriented protocol for

communication over point-to-point and multipoint links. It

implements the ARQ mechanisms .

 HDLC provides two common transfer modes that can be used in

different configurations: normal response mode (NRM) and

asynchronous balanced mode (ABM).

 In normal response mode (NRM), the station configuration is

unbalanced. We have one primary station and multiple secondary

stations. A primary station can send commands; a secondary station

can only respond. The NRM is used for both point-to-point and

multiple-point links, as shown in Figure 11.25.

11.50

 Asynchronous Balanced Mode

In asynchronous balanced mode (ABM), the configuration is

balanced. The link is point-to-point, and each station can

function as a primary and a secondary (acting as peers), as

shown in Figure 11.26. This is the common mode today.

11.51

