Best, Worst and Average Cases:

The **best case** running time of an algorithm is the function defined by the minimum number of steps taken on any instance of size.

The **worst case** running time of an algorithm is the function defined by the maximum number of steps taken on any instance of size n.

The **average case** running time of an algorithm is the function defined by an average number of steps taken on any instance of size n.

In some instances, the above three cases are equivalent (there is one formula only) for the same value of instance characteristic, like in summation array elements example (instance characteristic is n). But in other instances, dependency on instance characteristics is not enough to determine the time complexities, like in search problem.

Sequential search

write a sequential search function and then find the best, worst, and average case time complexity.

Solution:
Function SeqSearch (a: array of element, n:number of element, k: the number that look for it)

Begin

\[i=n \]
\[a[0]=k \]

while (\(a(i) \neq k \)) do

\[i=i-1 \]

end while

return i

end
Solution: In this example, the search process begins from the end of a.

The successful Searches:
- The Best case time complexities: When k number found in the position a(n). Therefore, the time complexities in the best case will be: \(T_{BSeqSearch}(n) = 4 = \Theta(1) \)
- The Worst case time complexities: when k found in the first position a(1), So: \(T_{WSeqSearch}(n) = 2 + 2n = \Theta(n) \)
- The Average case time complexities: It is the average of complexities for all cases:
 \[
 T_{ASeqSearch}(n) = \sum_{i=1}^{n} \frac{(n-i+1)}{n} = \frac{\sum_{i=1}^{n} n - \sum_{i=1}^{n} i + \sum_{i=1}^{n} 1}{n} = \frac{n^2 - \frac{(n+1)n}{2} + n}{n} = n - \frac{(n+1)}{2} + 1 = \frac{n+1}{2} = \Theta(n)
 \]

The Failed Searches: When k doesn't exist in the array:
- \(T_{FSeqSearch}(n) = n + 1 = \Theta(n) \)

Maximum element in one dimension array:
Find the max number in one dimension array, then find the best, worst and average cases for time complexities?

Function ArrayMax(a: array of element, n: number of element)

Begin
1. max = a(1)
2. For i = 2 to n
3. If max < a(i) then
4. max = a(i)
5. end if
6. end for
7. return max
end

The instance characteristics of this problem is n
Solution:

The successful cases:

- The Best case time complexities: When \(a(1)\) is the max number. That mean, there is no need to entered in if block (if condition is never be true):
 1. \(\cdots\cdots\cdots 1\)
 2. \(\cdots\cdots\cdots (n-2+1)+1=n\)
 3. \(\cdots\cdots\cdots n-1\)
 4. \(\cdots\cdots\cdots 0\)
 7. \(\cdots\cdots\cdots 1\)

\(T_B_{ArrayMax}(n)=2n+1=\Theta(n)\)

- The Worst case time complexities: when array a is sorted in increasing form, max element is \(a(n)\), So:
 1. \(\cdots\cdots\cdots 1\)
 2. \(\cdots\cdots\cdots (n-2+1)+1=n\)
 3. \(\cdots\cdots\cdots n-1\)
 4. \(\cdots\cdots\cdots n-1\)
 7. \(\cdots\cdots\cdots 1\)

\(T_W_{ArrayMax}(n)=3n=\Theta(n)\)

- The Average case time complexities: It is the average of complexities for all cases from the best to the worst one:

\[
\text{Average case} = \frac{\text{sumasion of cases of } i (1,2,3,\ldots,n)}{\text{number of steps}(n)}
\]

\[
T_A_{ArrayMax}(n)=\frac{\sum_{i=1}^{n}(2n+i)}{n} = \frac{5n+1}{2} = \Theta(n)
\]

Note:

- In average case, the \(i\) counter can be started from 1 or 0 depending on the example.
- if the loop is beginning from last to the first element then the average case will be:
\[\sum_{i=1}^{n} \frac{(3n-i+1)}{n} = \? \text{ H.W.} \]

The Failed cases: there is no failed case in this example.

H.W.

Prove that:

- \[\sum_{i=1}^{n} \frac{(2n+i)}{n} = \frac{5n+1}{2} \]
- \[5n^2 - 6 = \Theta(n^2) \]