
1

Lecture8: 8086 interrupt

Outline:

1. Introduction

2. Hardware interrupt

3. Nonmaskable interrupt

4. Maskable interrupt

5. Soft interrupt

6. reset

2

1. Introduction

An interrupt is the method of processing the microprocessor by peripheral

device. An interrupt is used to cause a temporary halt in the execution of

program. Microprocessor responds to the interrupt with an interrupt

service routine, which is short program or subroutine that instructs the

microprocessor on how to handle the interrupt.

There are two basic type of interrupt, maskable and non-maskable, non-

maskable interrupt requires an immediate response by microprocessor, it

usually used for serious circumstances like power failure. A maskable

interrupt is an interrupt that the microprocessor can ignore depending

upon some predetermined upon some predetermined condition defined by

status register.

Interrupt can divide to five groupe:

1. hardware interrupt

2. Non-maskable interrupt

3. Software interrupt

4. Internal interrupt

5. Reset

Hardware,software and internal interrupt are service on priority basis.

each interrupt is given a different priority level by assign it a type

number. Type 0 identifies the highest-priority and type 255 identifies

the lowest- priority interrupt.

The 80x86 chips allow up to 256 vectored interrupts. This means that you

can have up to 256 different sources for an interrupt and the 80x86 will

directly call the service routine for that interrupt without any software

processing. This is in contrast to nonvectored interrupts that transfer

control directly to a single interrupt service routine, regardless of the

interrupt source.

The 80x86 provides a 256 entry interrupt vector table beginning at

address 0:0 in memory. This is a 1K table containing 256 4-byte entries.

Each entry in this table contains a segmented address that points at the

interrupt service routine in memory. The lowest five types are

dedicated to specific interrupts such as the divide by zero interrupt and

the non maskable interrupt. The next 27 interrupt types, from 5 to 31 are

High priority

3

reserved by Intel for use in future microprocessors. The upper 224

interrupt types, from32 to 255, are available to use for hardware and

software interrupts.

When an interrupt occurs (shown in figure 1), regardless of source, the

80x86 does the following:

1. The CPU pushes the flags register onto the stack.

2. The CPU pushes a far return address (segment:offset) onto the

stack, segment value first.

3. The CPU determines the cause of the interrupt (i.e., the interrupt

number) and fetches the four byte interrupt vector from address

0:vector*4.

4. The CPU transfers control to the routine specified by the interrupt

vector table entry.

Figure 1:block diagram to interrupt handle

When the interrupt service routine wants to return control, it must execute

an IRET (interrupt return) instruction. The interrupt return pops the far

return address and the flags off the stack. Note that executing a far return

is insufficient since that would leave the flags on the stack.

2. hardware interrupt

The primary sources of interrupts, however, are the PCs timer chip,

keyboard, serial ports, parallel ports, disk drives, CMOS real-time clock,

4

mouse, sound cards, and other peripheral devices. These devices connect

to an Intel 8259A programmable interrupt controller (PIC) that prioritizes

the interrupts and interfaces with the 80x86 CPU. The 8259A chip adds

considerable complexity to the software that processes interrupts.

2.1 programmable interrupt controller

The 8259A programmable interrupt controller chip accepts interrupts

from up to eight different devices, which shown in figure (2), If any one

of the devices requests service, the 8259 will toggle an interrupt output

line (connected to the CPU) and pass a programmable interrupt vector to

the CPU. You can cascade (show in figure(3))the device to support up to

64 devices by connecting nine 8259s together: eight of the devices with

eight inputs each whose outputs become the eight inputs of the ninth

device. A typical PC uses two of these devices to provide 15 interrupt

inputs (seven on the master PIC with the eight input coming from the

slave PIC to process its eight inputs)7. The sections following this one

will describe the devices connected to each of those inputs, for now we

will concentrate on what the 8259 does with those inputs. Nevertheless,

for the sake of discussion, the following table lists the interrupt sources

on the PC:

Figure 2: general block diagram 8086 interrupt

5

Figure 3:cascade 8259A

3. NON-MASKABLE INTERRUPT (NMI)

The processor provides a single non-maskable interrupt pin (NMI) which

has higher priority than the maskable interrupt request pin (INTR). A

typical use would be to activate a power failure routine. The NMI is edge-

triggered on a LOW-to-HIGH transition. The activation of this pin causes

a type 2 interrupt. NMI is required to have a duration in the HIGH state

of greater than two CLK cycles, but is not required to be synchronized to

the clock. Any high-going transition of NMI is latched on-chip and will

be serviced at the end of the current instruction or between whole moves

of a block-type instruction. Worst case response to NMI would be for

multiply, divide, and variable shift instructions. There is no specification

on the occurrence of the low-going edge; it may occur before, during, or

after the servicing of NMI. Another

high-going edge triggers another response if it occurs after the start of the

NMI procedure. The signal must be free of logical spikes in general and

be free of bounces on the low-going edge to avoid triggering extraneous

responses.

4. MASKABLE INTERRUPT

Whenever an external signal activates the INTR pin, the microprocessor

will be interrupted only if interrupts are enabled using

set interrupt Flag instruction. If the interrupts are disabled using clear

interrupt Flag instruction, the microprocessor will not get

interrupted even if INTR is activated. That is, INTR can be masked.

INTR is a non vectored interrupt, which means, the 8086 does not

6

know where to branch to service the interrupt. The 8086 has to be told by

an external device like a Programmable Interrupt controller regarding

the branch. Whenever the INTR pin is activated by an I/O port, if

Interrupts are enabled and NMI is not active at that time, the

microprocessor finishes the current instruction that is being executed and

gives out a ‘0’ on INTA pin twice. When INTA pin goes low for the first

time, it asks the external device to get ready. In response to the second

INTA the microprocessor receives the 8 bit, say N, from a programmable

Interrupt controller. The action taken is as follows.

1. Complete the current instruction.

2. Activates INTA output, and receives type Number, say N

3. Flag register value, CS value of the return address & IP value of

thereturn address are pushed on to the stack.

4. IP value is loaded from contents of word location N x 4.

5. CS is loaded from contents of the next word location.

6. 2Interrupt Flag and trap Flag are reset to 0.

At the end of the ISS, there will be an IRET instruction. This performs

popping off from the stack top to IP, CS and Flag registers. Finally, the

register values which are also saved on the stack at the start of ISS, are

restored from the stack and a return to the interrupted program takes place

using the IRET instruction.

Table 1:type of interrupt

7

4. Software interrupt Instructions

There are instructions in 8086 which cause an interrupt. They are

 INT instructions with type number specified.

 INT 3, Break Point Interrupt instruction.

 INTO, Interrupt on overflow instruction.

These are instructions at the desired places in a program. When one of

these instructions is executed a branch to an ISS takes place. Because

their execution results in a branch to an ISS, they are called interrupts.

Software Interrupt instructions can be used to test the working of the

various Interrupt handlers- For example, we can execute INTO

instruction to execute type 0 ISS, without really having to divide a

number by 0. Similarly, we can execute INT 2 instruction to

test NMI ISS.

4.1 INT-Interrupt Instruction with Type number Specified

The mnemonic for this is INT. It is a 2 byte instruction. The first

byte provides the op-code and the second byte the Interrupt type number.

Op-code for this instruction is CDH

8

The execution of an INT instruction, say INTN, when N is the value in

the range 00H to FFH, results in the following:

1. Flag register value is pushed on to the stack.

2. CS value of the Return address and IP value of the Return address

are push edon to the stack.

3. IP is loaded from the contents of the word location N x 4.

4. CS is loaded from the contents of the next word location.

5. Interrupt Flag and Trap Flag are reset to 0.

Thus a branch to the ISS take place. During the ISS, interrupt are

 disabled because the Interrupt flag is reset to 0.At the end of the ISS,

there will be an IRET instruction. Thus a return back to the interrupted

program takes place with Flag registers unchanged.

4.2. INT 3-Break Point Interrupt Instruction

When a break point is inserted, the system executes the instructions up to

the breakpoint, and then goes to the break point procedure. Unlike the

single-Step feature which stops execution after each

instruction, the breakpoint feature executes all the instructions up to the

inserted breakpoint and then stops execution. The mnemonic for the

instruction is INT3. It is a 1 byte instruction Op-code for this is CCH.

The execution of INT3 instruction results in the following.

1. Flag register value is pushed on to the Stack.

2. CS value of the return address and IP value of the return address

are pushed onto the Stack.

3. IP is loaded from the contents of the word location 3x4 = 0000CH.

4. CS is loaded from the contents of the next word location.

5. Interrupt Flag and Trap Flag are reset to 0.

Thus a branch to the ISS takes place. During the ISS, interrupts are

disabled because Interrupt flag is reset to 0. At the end of the ISS, there

will be an IRET instructionto return back to the interrupted program.A

break point interrupt service procedure usually saves all the register

contents onthe Stack. Depending upon the system, it may then send the

9

register contents to the CRTdisplay and wait for the next command from

the user.

4.3. INTO - Interrupt on overflow instruction

The 8086 overflow flag, OF, will be set if the signed result of an

arithmetic operation on two signed numbers is too large to be represented

in the destination register or memory location. For example, if we add the

8-bit signed number 01101100 and the 8- bit signed number 01010001,

the signed result will be 10111101. This is correct if we add unsigned

binary numbers, but it is not the correct signed result. There are two ways

to detect and respond to an overflow error in a program. One way is to

put the jump if overflow instruction, JO, immediately after the arithmetic

instruction. If the overflow flag is Set, execution will jump to the address

specified in the JO instruction. At this address an error routine may be put

which respond to the overflow. The second way is to put them INTO

instruction immediately after the arithmetic Instruction in the program.

The mnemonic for the instruction is INTO. It is a 1 byte instruction.

The op-code for this is CEH. It is a conditional interrupt instruction. Only

if the overflow flag is Set, a branch takes place to an interrupt handler

whose interrupt type number is 4. If the overflow flag is reset,

the execution continues with the next instruction. The execution of INTO

results in the following.

1. Flag register values are pushed on to the Stack.

2. CS value of the return address and IP value of the return address

and IP value of the return address are pushed on to the stack.

3. IP is loaded from the contents of word location 4x4 = 00010H.

4. CS is loaded from the contents of next word location.

5. Interrupt flag and Trap flag are reset to 0.

Thus a branch to ISS takes place. During the ISS, interrupts are disabled.

At the end of ISS, there will be an IRET instruction, returning back to the

interrupted program. Instructions in the ISS procedure perform the

desired response to the error condition.

10

6.RESET

Processor initialization or start up is accomplished with activation

(HIGH) of the RESET pin which it shows in table (2). The 8086 RESET

is required to be HIGH for greater than 4 CLK cycles. The 8086 will

terminate operations on the high-going edge of RESET and will remain

dormant as long as RESET is HIGH. The low-going transition of RESET

triggers an internal reset sequence for approximately 10 CLK cycles.

After this interval the 8086 operates normally beginning with the

instruction in absolute location FFFF0H.

Table 2:process initialization register content

